Design of carbon supports for metal-catalyzed acetylene hydrochlorination

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/116159
Información del item - Informació de l'item - Item information
Título: Design of carbon supports for metal-catalyzed acetylene hydrochlorination
Autor/es: Kaiser, Selina K. | Surin, Ivan | Amorós-Pérez, Ana | Büchele, Simon | Krumeich, Frank | Clark, Adam H. | Román-Martínez, M. Carmen | Lillo-Rodenas, Maria Angeles | Pérez-Ramírez, Javier
Grupo/s de investigación o GITE: Materiales Carbonosos y Medio Ambiente
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Carbon supports | Metal-catalyzed | Acetylene hydrochlorination
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: 29-jun-2021
Editor: Springer Nature
Cita bibliográfica: Nature Communications. 2021, 12:4016. https://doi.org/10.1038/s41467-021-24330-2
Resumen: For decades, carbons have been the support of choice in acetylene hydrochlorination, a key industrial process for polyvinyl chloride manufacture. However, no unequivocal design criteria could be established to date, due to the complex interplay between the carbon host and the metal nanostructure. Herein, we disentangle the roles of carbon in determining activity and stability of platinum-, ruthenium-, and gold-based hydrochlorination catalysts and derive descriptors for optimal host design, by systematically varying the porous properties and surface functionalization of carbon, while preserving the active metal sites. The acetylene adsorption capacity is identified as central activity descriptor, while the density of acidic oxygen sites determines the coking tendency and thus catalyst stability. With this understanding, a platinum single-atom catalyst is developed with stable catalytic performance under two-fold accelerated deactivation conditions compared to the state-of-the-art system, marking a step ahead towards sustainable PVC production.
Patrocinador/es: This work was supported by ETH research grant (ETH-40 17-1) and GV (PROMETEO/2018/076).
URI: http://hdl.handle.net/10045/116159
ISSN: 2041-1723
DOI: 10.1038/s41467-021-24330-2
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Revisión científica: si
Versión del editor: https://doi.org/10.1038/s41467-021-24330-2
Aparece en las colecciones:INV - MCMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailKaiser_etal_2021_NatureComm.pdf2,66 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons