Molybdenum Oxide Supported on Ti3AlC2 is an Active Reverse Water–Gas Shift Catalyst

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/114049
Información del item - Informació de l'item - Item information
Título: Molybdenum Oxide Supported on Ti3AlC2 is an Active Reverse Water–Gas Shift Catalyst
Autor/es: Ronda-Lloret, Maria | Yang, Liuqingqing | Hammerton, Michelle | Marakatti, Vijaykumar S. | Tromp, Moniek | Sofer, Zdeněk | Sepúlveda-Escribano, Antonio | Ramos-Fernández, Enrique V. | Delgado, Juan José | Rothenberg, Gadi | Ramírez Reina, Tomás | Shiju, N. Raveendran
Grupo/s de investigación o GITE: Materiales Avanzados
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: CO2 hydrogenation | MAX phases | RWGS | Syn gas | Molybdenum
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: 29-mar-2021
Editor: American Chemical Society
Cita bibliográfica: ACS Sustainable Chemistry & Engineering. 2021, 9(14): 4957-4966. https://doi.org/10.1021/acssuschemeng.0c07881
Resumen: MAX phases are layered ternary carbides or nitrides that are attractive for catalysis applications due to their unusual set of properties. They show high thermal stability like ceramics, but they are also tough, ductile, and good conductors of heat and electricity like metals. Here, we study the potential of the Ti3AlC2 MAX phase as a support for molybdenum oxide for the reverse water–gas shift (RWGS) reaction, comparing this new catalyst to more traditional materials. The catalyst showed higher turnover frequency values than MoO3/TiO2 and MoO3/Al2O3 catalysts, due to the outstanding electronic properties of the Ti3AlC2 support. We observed a charge transfer effect from the electronically rich Ti3AlC2 MAX phase to the catalyst surface, which in turn enhances the reducibility of MoO3 species during reaction. The redox properties of the MoO3/Ti3AlC2 catalyst improve its RWGS intrinsic activity compared to TiO2- and Al2O3-based catalysts.
Patrocinador/es: We thank the Netherlands Organisation for Scientific Research (NWO) for the grant “Developing novel catalytic materials for converting CO2, methane and ethane to high-value chemicals in a hybrid plasma-catalytic reactor” (China.15.119). We also acknowledge financial support by MINECO (Spain) through projects MAT2017-86992-R and MAT2016-80285-P. Z.S. was supported by the project LTAUSA19034, from the Ministry of Education Youth and Sports (MEYS). M.H. and M.T. gratefully acknowledge NWO under LIFT, Launchpad for Innovative Future Technology, PreCiOuS, 731.015.407. We also thank the staff of the Swiss Light Source (SLS) synchrotron (SuperXAS beamline and proposal number 20190956), Maarten Nachtegaal and Adam Clark, for support during synchrotron measurements.
URI: http://hdl.handle.net/10045/114049
ISSN: 2168-0485
DOI: 10.1021/acssuschemeng.0c07881
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2021 The Authors. Published by American Chemical Society. Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0)
Revisión científica: si
Versión del editor: https://doi.org/10.1021/acssuschemeng.0c07881
Aparece en las colecciones:INV - LMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailRonda-Lloret_etal_2021_ACSSustainableChemEng.pdf3,99 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons