Multiperiod work and heat integration

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/110365
Información del item - Informació de l'item - Item information
Título: Multiperiod work and heat integration
Autor/es: Pavão, Leandro V. | Miranda, Camila B. | Caballero, José A. | Ravagnani, Mauro A.S.S. | Costa, Caliane B.B.
Grupo/s de investigación o GITE: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Ingeniería Química | Universidad de Alicante. Instituto Universitario de Ingeniería de los Procesos Químicos
Palabras clave: Optimization | Work and heat integration | Multiperiod work and heat exchange networks | Meta-heuristics | Process synthesis
Área/s de conocimiento: Ingeniería Química
Fecha de publicación: 1-ene-2021
Editor: Elsevier
Cita bibliográfica: Energy Conversion and Management. 2021, 227: 113587. https://doi.org/10.1016/j.enconman.2020.113587
Resumen: The synthesis of multiperiod heat exchanger networks (HEN) is a well-studied topic in heat integration. Several methods for identifying heat exchanger network designs that are able to feasibly operate under multiple conditions have been presented. Multiperiod models are certainly a notable form of achieving such resilient designs. In work and heat integration, however, solutions presented so far are for nominal conditions only. This work presents a step-wise optimization-based multiperiod work and heat exchange network synthesis framework. Hybrid meta-heuristic methods are used in the optimization steps. The methodology is able to obtain work and heat exchanger networks (WHENs) that are able to operate under multiple known scenarios. A set of critical conditions for stream properties in work integration is proposed. When these scenarios are modeled as finite operating periods (which are here referred to as non-nominal periods), a WHEN which can feasibly operate under nominal and critical conditions can be obtained. An example is tackled in two cases: the first, with one nominal and six critical, non-nominal periods; the second with two nominal and twelve non-nominal periods. Note that with that number of periods, the problem is considerably more complex than in multiperiod HEN synthesis (which usually comprises three or four periods). Solutions obtained with the present method are compared to those obtaining by simply merging single-period solutions obtained for each period individually. Capital investments are 30.2% and 58.2% lower in Cases 1 and 2 than in straightforwardly merged solutions. The capacity utilization parameters also demonstrate that the overdesign issue is notably reduced in these solutions.
Patrocinador/es: The authors gratefully acknowledge the financial support from the Coordination for the Improvement of Higher Education Personnel – Process 88887.360812/2019-00 – CAPES (Brazil) and the National Council for Scientific and Technological Development – Processes 305055/2017-8, 311807/2018-6 and 428650/2018-0 – CNPq (Brazil).
URI: http://hdl.handle.net/10045/110365
ISSN: 0196-8904 (Print) | 1879-2227 (Online)
DOI: 10.1016/j.enconman.2020.113587
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2020 Elsevier Ltd.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.enconman.2020.113587
Aparece en las colecciones:INV - CONCEPT - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailPavao_etal_2021_EnergyConversManag_final.pdfVersión final (acceso restringido)9,4 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailPavao_etal_2021_EnergyConversManag_preprint.pdfPreprint (acceso abierto)2,78 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.