Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/108337
Información del item - Informació de l'item - Item information
Título: Well-defined meso/macroporous materials as a host structure for methane hydrate formation: Organic versus carbon xerogels
Autor/es: Cuadrado-Collados, Carlos | Farrando Pérez, Judit | Martinez-Escandell, Manuel | Ramírez-Montoya, Luis Adrián | Menéndez, J. Angel | Arenillas, Ana | Montes-Morán, Miguel A. | Silvestre-Albero, Joaquín
Grupo/s de investigación o GITE: Materiales Avanzados
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Xerogels | Gas hydrates | Confinement effects | Porous structure | Surface chemistry
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: 15-dic-2020
Editor: Elsevier
Cita bibliográfica: Chemical Engineering Journal. 2020, 402: 126276. https://doi.org/10.1016/j.cej.2020.126276
Resumen: A series of xerogels with a properly designed porous structure and surface chemistry have been synthesized and evaluated as a host structure to promote the nucleation and growth of methane hydrates. Organic xerogels (OGs) have been synthesized from resorcinol-formaldehyde mixtures using a sol-gel approach and microwave heating. These xerogels are hydrophilic in nature and possess designed meso/macrocavities in the pore size range 5–55 nm. Carbon xerogels (CGs) have been synthesized from their organic counterparts after a carbonization treatment at high temperature. Interestingly, the carbonization process does not alter/modify substantially the porous network of the parent xerogels, while developing new micropores. Under water-supplying conditions, the two types of xerogels exhibit a large improvement in the methane adsorption capacity compared to the pure physisorption process taking place in dry conditions (up to 200% improvement), and associated with a significant hysteresis loop. These excellent values must be associated with the promoting effect of these xerogels in the water-to-hydrate conversion process. The comparison of OGs and CGs as a host structure anticipates that surface chemistry, total pore volume and pore size are critical parameters defining the extent and yield of the methane hydrate formation process.
Patrocinador/es: Authors would like to acknowledge financial support from the MINECO (projects MAT2016-80285-p and CTQ2017-87820-R). Principado de Asturias-FICYT-FEDER (Project PCTI-Asturias IDI/2018/000118) is also acknowledged. L.A. Ramírez-Montoya thanks CONACyT, México, for a post-doctoral grant (CVU No 330625, 2017).
URI: http://hdl.handle.net/10045/108337
ISSN: 1385-8947 (Print) | 1873-3212 (Online)
DOI: 10.1016/j.cej.2020.126276
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2020 Elsevier B.V.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.cej.2020.126276
Aparece en las colecciones:INV - LMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailCuadrado-Collados_etal_2020_ChemEngJ_final.pdfVersión final (acceso restringido)1,85 MBAdobe PDFAbrir    Solicitar una copia
ThumbnailCuadrado-Collados_etal_2020_ChemEngJ_accepted.pdfAccepted Manuscript (acceso abierto)1,42 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.