Free-standing compact cathodes for high volumetric and gravimetric capacity Li–S batteries

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/71642
Información del item - Informació de l'item - Item information
Title: Free-standing compact cathodes for high volumetric and gravimetric capacity Li–S batteries
Authors: Hu, Cheng | Kirk, Caroline | Silvestre-Albero, Joaquín | Rodríguez Reinoso, Francisco | Biggs, Mark J.
Research Group/s: Materiales Avanzados
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Free-standing | Compact cathodes | High volumetric capacity | Gravimetric capacity | Li–S batteries
Knowledge Area: Química Inorgánica
Issue Date: 25-Aug-2017
Publisher: Royal Society of Chemistry
Citation: Journal of Materials Chemistry A. 2017, 5: 19924-19933. doi:10.1039/C7TA06781J
Abstract: Free-standing high performance Li–S battery cathodes are currently attracting significant research efforts. Loose macroporous structures have been proposed by many to improve sulfur utilization and areal capacity. However, their low cathode sulfur densities and high electrolyte fractions lead to low cell volumetric and gravimetric capacities. We report here a compact free-standing Li–S cathode structure that delivers areal, volumetric and gravimetric capacities all exceeding those of typical Li-ion batteries. The cathodes, formed by pressure filtration of the constituents, are composed of highly micro/mesoporous nitrogen-doped carbon nanospheres (NCNSs) embedded in the macropores of a multi-walled carbon nanotube (MWCNT) network to form a dense structure. The MWCNT network facilitates low cathode impedance. The NCNSs maximize sulfur utilization and immobilization. These collectively result in high cathode volumetric capacity (1106 mA h cm−3) and low electrolyte requirement (6 μL mg−1 of sulfur), which together lead to high cell-level gravimetric capacity. Stable long-term cycling at 0.3C (2.5 mA cm−2 for 5 mg cm−2 areal sulfur-loading) has also been achieved, with the areal and volumetric capacities of the best remaining above typical Li-ion values over 270 cycles and the per-cycle capacity fading being only 0.1%. The facile preparation means significant potential for large scale use.
Sponsor: CH acknowledges a Postdoctoral Fellowship provided by Loughborough University.
URI: http://hdl.handle.net/10045/71642
ISSN: 2050-7488 (Print) | 2050-7496 (Online)
DOI: 10.1039/C7TA06781J
Language: eng
Type: info:eu-repo/semantics/article
Rights: © The Royal Society of Chemistry 2017
Peer Review: si
Publisher version: http://dx.doi.org/10.1039/C7TA06781J
Appears in Collections:INV - LMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2017_Hu_etal_JMaterChemA_final.pdfVersión final (acceso restringido)3,15 MBAdobe PDFOpen    Request a copy
Thumbnail2017_Hu_etal_JMaterChemA_accepted.pdfAccepted Manuscript (acceso abierto)2,19 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.