Stem radial growth and water storage responses to heat and drought vary between conifers with differing hydraulic strategies

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/77393
Información del item - Informació de l'item - Item information
Title: Stem radial growth and water storage responses to heat and drought vary between conifers with differing hydraulic strategies
Authors: Manrique-Alba, Àngela | Sevanto, Sanna | Adams, Henry D. | Collins, Adam D. | Dickman, Lee T. | Chirino Miranda, Esteban | Bellot, Juan | McDowell, Nate G.
Research Group/s: Gestión de Ecosistemas y de la Biodiversidad (GEB)
Center, Department or Service: Universidad de Alicante. Departamento de Ecología | Universidad de Alicante. Instituto Multidisciplinar para el Estudio del Medio "Ramón Margalef"
Keywords: Growth | Increased temperature | Juniperus monosperma | LVDT | Pinus edulis | Water potential
Knowledge Area: Ecología
Issue Date: Aug-2018
Publisher: John Wiley & Sons
Citation: Plant, Cell & Environment. 2018, 41(8): 1926-1934. doi:10.1111/pce.13340
Abstract: We investigated stem radial growth and water storage dynamics of 2 conifer species differing in hydraulic carbon strategies, Juniperus monosperma and Pinus edulis, under conditions of ambient, drought (∼45% reduction in precipitation), heat (∼4.8 °C temperature increase), and the combination of drought + heat, in 2013 and 2014. Juniper maintained low growth across all treatments. Overall, the relatively isohydric piñon pine showed significantly greater growth and water storage recharge than the relatively anisohydric juniper across all treatments in the average climate year (2014) but no differences in the regionally dry year (2013). Piñon pine ceased growth at a constant predawn water potential across all treatments and at a less negative water potential threshold than juniper. Heat has a greater negative impact on piñon pines' growth and water storage than drought, whereas juniper was, in contrast, unaffected by heat but strongly impacted by drought. The whole‐plant hydraulic carbon strategies, in this case captured using the isohydric/anisohydric concept, translate into alternative growth and water storage strategies under drought and heat conditions.
Sponsor: This study was supported by DOE—Office of Biological and Environmental Research and the Spanish Ministry of Economy and Competitiveness (MINECO) via competitive grant CGL2015‐69773‐C2‐1‐P. N.G.M. was additionally supported by Pacific Northwest National Laboratories LDRD program. This research is part of the doctoral thesis of A.M.‐A. at the University of Alicante, supported by an FPI scholarship.
URI: http://hdl.handle.net/10045/77393
ISSN: 0140-7791 (Print) | 1365-3040 (Online)
DOI: 10.1111/pce.13340
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2018 John Wiley & Sons Ltd
Peer Review: si
Publisher version: https://doi.org/10.1111/pce.13340
Appears in Collections:INV - GEB - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Manrique-Alba_etal_PlantCellEnviron_final.pdfVersión final (acceso restringido)1,03 MBAdobe PDFOpen    Request a copy
Thumbnail2018_Manrique-Alba_etal_PlantCellEnviron_accepted.pdfAccepted Manuscript (acceso abierto)693,06 kBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.