Optimization of the design, operating conditions, and coupling configuration of combined cycle power plants and CO2 capture processes by minimizing the mitigation cost

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/69957
Información del item - Informació de l'item - Item information
Title: Optimization of the design, operating conditions, and coupling configuration of combined cycle power plants and CO2 capture processes by minimizing the mitigation cost
Authors: Mores, Patricia Liliana | Manassaldi, Juan I. | Scenna, Nicolás José | Caballero, José A. | Mussati, Miguel Ceferino | Mussati, Sergio Fabián
Research Group/s: Computer Optimization of Chemical Engineering Processes and Technologies (CONCEPT)
Center, Department or Service: Universidad de Alicante. Departamento de Ingeniería Química
Keywords: Natural gas combined cycle NGCC | Post-combustion CO2 capture | Mitigation cost | Optimal coupling schemes | NLP model | GAMS
Knowledge Area: Ingeniería Química
Issue Date: 1-Jan-2018
Publisher: Elsevier
Citation: Chemical Engineering Journal. 2018, 331: 870-894. doi:10.1016/j.cej.2017.08.111
Abstract: This paper deals with the optimization of the coupling between a natural gas combined cycle (NGCC) plant and a post-combustion CO2 capture process by minimizing the mitigation cost – defined as the ratio between the cost of electric power generation and the amount of CO2 emitted per unit of total net electric power generated – while satisfying the design specifications: electric power generation capacity and CO2 capture level. Three candidate coupling configurations, which differ in the place where the steam is extracted from, are optimized using detailed and rigorous models for both the NGCC and the CO2 capture plants. By comparing the mitigation cost of each configuration, the optimal integration configuration and the corresponding optimal sizes and operating conditions of all process units (steam turbines, gas turbines, heat recovery steam generators HRSGs, absorption and regeneration columns, reboilers and condensers, and pumps) are provided. In the computed optimal solution, the steam required by the CO2 capture plant is extracted from both the steam turbine and the HRSG (evaporator operating at low pressure), and the mitigation cost is 90.88 $/t CO2. The optimal solution is compared with suboptimal solutions corresponding to the other two candidate coupling schemes. These solutions are compared in detail regarding capital investment and operating costs, HRSG configuration, process unit sizes, and operating conditions.
Sponsor: The financial support from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Facultad Regional Rosario of the Universidad Tecnológica Nacional from Argentina are gratefully acknowledged.
URI: http://hdl.handle.net/10045/69957
ISSN: 1385-8947 (Print) | 1873-3212 (Online)
DOI: 10.1016/j.cej.2017.08.111
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2017 Elsevier B.V.
Peer Review: si
Publisher version: http://dx.doi.org/10.1016/j.cej.2017.08.111
Appears in Collections:INV - CONCEPT - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Mores_etal_ChemEngJ_final.pdfVersión final (acceso restringido)3,41 MBAdobe PDFOpen    Request a copy
Thumbnail2018_Mores_etal_ChemEngJ_accepted.pdfAccepted Manuscript (acceso abierto)2,32 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.