Theoretical Study of Cyclic Pyrene Oligomers and Their Resemblance with Cyclic Paraphenylenes: Disclosing Structure–Property Relationships for Cyclic Nanorings

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/63392
Información del item - Informació de l'item - Item information
Title: Theoretical Study of Cyclic Pyrene Oligomers and Their Resemblance with Cyclic Paraphenylenes: Disclosing Structure–Property Relationships for Cyclic Nanorings
Authors: Moral, Mónica | Pérez-Guardiola, Andrés | San-Fabián, Emilio | Pérez-Jiménez, Ángel J. | Sancho-Garcia, Juan-Carlos
Research Group/s: Química Cuántica
Center, Department or Service: Universidad de Alicante. Departamento de Química Física
Keywords: Cyclic pyrene oligomers | Cyclic paraphenylenes | Cyclic nanorings
Knowledge Area: Química Física
Issue Date: 7-Sep-2016
Publisher: American Chemical Society
Citation: The Journal of Physical Chemistry C. 2016, 120(38): 22069-22078. doi:10.1021/acs.jpcc.6b07573
Abstract: We theoretically discuss here the relationships between the structure of recently synthesized nanorings, dubbed as cyclo-2,7-pyrenylene (CPY) and formed upon bending and bonding a finite number of pyrene units until self-cyclation, and a set of chemically relevant properties such as the induced structural and energetical strain, the electronic and optical properties, or the response to charge injection, as well as their transport mechanism through a concerted migration of charge-carriers. We also compare these properties, and their evolution with the number of pyrene-linked units, with those obtained for the closely related cycloparaphenylene (CPP) compounds, trying to disclose the underlying structure–property guidelines. To do it, we always employ dispersion-corrected DFT methods to systematically include the key effects affecting all the properties tackled. A correct match with some available experimental results, for the [4]CPY compound (the only one synthesized so far), anticipates the accuracy of the calculations done for the rest of compounds. Finally, since this kind of systems are envisioned as possible precursors for the fine-tuned and controlled synthesis of carbon nanotubes, we also address the stability of the dimers found in their crystalline structure, and the associated cohesive energy, which may drive the synthesis of the corresponding nanotubes after an adequate dehydrogenation reaction.
Sponsor: This work is supported by the “Ministerio de Economía y Competitividad’’ of Spain and the “European Regional Development Fund” through Project CTQ2014-55073-P.
URI: http://hdl.handle.net/10045/63392
ISSN: 1932-7447 (Print) | 1932-7455 (Online)
DOI: 10.1021/acs.jpcc.6b07573
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2016 American Chemical Society
Peer Review: si
Publisher version: http://dx.doi.org/10.1021/acs.jpcc.6b07573
Appears in Collections:INV - QC - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2016_Moral_etal_JPhysChemC_final.pdfVersión final (acceso restringido)3,25 MBAdobe PDFOpen    Request a copy
Thumbnail2016_Moral_etal_JPhysChemC_rev.pdfVersión revisada (acceso abierto)1,92 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.