Steady-state, self-oscillating and chaotic behavior of a PID controlled nonlinear servomechanism by using Bogdanov-Takens and Andronov-Poincaré-Hopf bifurcations

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/36160
Información del item - Informació de l'item - Item information
Title: Steady-state, self-oscillating and chaotic behavior of a PID controlled nonlinear servomechanism by using Bogdanov-Takens and Andronov-Poincaré-Hopf bifurcations
Authors: Pérez Molina, Manuel | Pérez Polo, Manuel
Research Group/s: Holografía y Procesado Óptico | Grupo de Control, Ingeniería de Sistemas y Transmisión de Datos
Center, Department or Service: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal
Keywords: Servomechanism | Bogdanov-Takens bifurcation | Andronov-Poincaré-Hopf bifurcation | Center manifold | Chaotic behavior | PID controller
Knowledge Area: Física Aplicada | Ingeniería de Sistemas y Automática
Issue Date: 12-Mar-2014
Publisher: Elsevier
Citation: Communications in Nonlinear Science and Numerical Simulation. 2014, Accepted Manuscript, Available online 12 March 2014. doi:10.1016/j.cnsns.2014.03.003
Abstract: This paper analyzes a controlled servomechanism with feedback and a cubic nonlinearity by means of the Bogdanov-Takens and Andronov-Poincaré-Hopf bifurcations, from which steady-state, self-oscillating and chaotic behaviors will be investigated using the center manifold theorem. The system controller is formed by a Proportional plus Integral plus Derivative action (PID) that allows to stabilize and drive to a prescribed set point a body connected to the shaft of a DC motor. The Bogdanov-Takens bifurcation is analyzed through the second Lyapunov stability method and the harmonic-balance method, whereas the first Lyapunov value is used for the Andronov-Poincaré-Hopf bifurcation. On the basis of the results deduced from the bifurcation analysis, we show a procedure to select the parameters of the PID controller so that an arbitrary steady-state position of the servomechanism can be reached even in presence of noise. We also show how chaotic behavior can be obtained by applying a harmonical external torque to the device in self-oscillating regime. The advantage of achieving chaotic behavior is that it can be used so that the system reaches a set point inside a strange attractor with a small control effort. The analytical calculations have been verified through detailed numerical simulations.
URI: http://hdl.handle.net/10045/36160
ISSN: 1007-5704 (Print) | 1878-7274 (Online)
DOI: 10.1016/j.cnsns.2014.03.003
Language: eng
Type: info:eu-repo/semantics/article
Peer Review: si
Publisher version: http://dx.doi.org/10.1016/j.cnsns.2014.03.003
Appears in Collections:INV - GCIST - Artículos de Revistas
INV - GHPO - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2014_Perez-Molina_Perez-Polo_CNSNS.pdfAccepted Manuscript (acceso abierto)1,16 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.