Magnetization reversal of ferromagnetic nanowires studied by magnetic force microscopy

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/25195
Información del item - Informació de l'item - Item information
Title: Magnetization reversal of ferromagnetic nanowires studied by magnetic force microscopy
Authors: Sorop, T.G. | Untiedt, Carlos | Luis, F. | Kröll, M. | Raşa, M. | Jongh, L.J. de
Research Group/s: Grupo de Nanofísica
Center, Department or Service: Universidad de Alicante. Departamento de Física Aplicada
Keywords: Magnetization reversal | Ferromagnetic nanowires | Magnetic force microscopy
Knowledge Area: Física de la Materia Condensada
Issue Date: 9-Jan-2003
Publisher: American Physical Society
Citation: SOROP, T.G., et al. “Magnetization reversal of ferromagnetic nanowires studied by magnetic force microscopy”. Physical Review B. Vol. 67, No. 1 (2003). ISSN 1098-0121, pp. 014402-1/8
Abstract: The magnetization reversal of two-dimensional arrays of parallel ferromagnetic Fe nanowires embedded in nanoporous alumina templates has been studied. By combining bulk magnetization measurements (superconducting quantum interference device magnetometry) with field-dependent magnetic force microscopy (MFM), we have been able to decompose the macroscopic hysteresis loop in terms of the irreversible magnetic responses of individual nanowires. The latter are found to behave as monodomain ferromagnetic needles, with hysteresis loops displaced (asymmetric) as a consequence of the strong dipolar interactions between them. The application of field-dependent MFM provides a microscopic method to obtain the hysteresis curve of the array, by simply registering the fraction of up and down magnetized wires as a function of applied field. The observed deviations from the rectangular shape of the macroscopic hysteresis loop of the array can be ascribed to the spatial variation of the dipolar field through the inhomogeneously filled membrane. The system studied proves to be an excellent example of the two-dimensional classical Preisach model, well known from the field of hysteresis modeling and micromagnetism.
Sponsor: This work was part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (FOM), which is supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NOW). C.U. and F.L. acknowledge grants funded by the European Union in the framework of its TMR Marie Curie Program. M.K. acknowledges a grant funded by Deutsche Forschungsgemeinschaft (DFG).
URI: http://hdl.handle.net/10045/25195
ISSN: 1098-0121 (Print) | 1550-235X (Online)
DOI: 10.1103/PhysRevB.67.014402
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2003 The American Physical Society
Peer Review: si
Publisher version: http://dx.doi.org/10.1103/PhysRevB.67.014402
Appears in Collections:INV - Grupo de Nanofísica - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2003_PhysRevB.67.014402.pdf417,97 kBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.