Understanding the electrochemical hydrogenation of acetone on Pt single crystal electrodes

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/126155
Información del item - Informació de l'item - Item information
Title: Understanding the electrochemical hydrogenation of acetone on Pt single crystal electrodes
Authors: Mekazni, Dalila S. | Arán-Ais, Rosa M. | Feliu, Juan M. | Herrero, Enrique
Research Group/s: Electroquímica de Superficies
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: Electrocatalysis | Hydrogenation | Acetone | Pt(110) | Stepped surfaces | Supporting electrolyte
Issue Date: 13-Aug-2022
Publisher: Elsevier
Citation: Journal of Electroanalytical Chemistry. 2022, 922: 116697. https://doi.org/10.1016/j.jelechem.2022.116697
Abstract: The heterogeneous upgrading of biomass by means of electrocatalytic hydrogenation is an attractive way to refine products for industrial and pharmaceutical purposes. Also, the efficient electrochemical reduction of carbonyl compounds can act as hydrogen vectors, and therefore energy vectors. In this manuscript, we render further fundamental insights into the electrochemical reduction of acetone as a model molecule of carbonyl compounds. The structural sensitivity of the reaction is demonstrated by using platinum single crystal electrodes with low Miller indices and stepped electrodes with (110) terraces and either (111) or (100) monoatomic steps. Among the basal planes, Pt(110) is the only one active for the electroreduction of acetone. The inclusion of (111) steps on the (110) terraces does not significantly alter the behavior of Pt(110), but increasing the (100) step density has been observed to decrease the activity. We attribute this different performance to a geometrical effect of the active sites. By using different supporting electrolytes, we have found that sulfate competes with acetone for the surface sites, thus modifying the adlayer interfacial structure and hampering acetone reactivity.
Sponsor: This research was funded by Ministerio de Ciencia e Innovación (Spain) grant number PID2019-105653GB-I00), Generalitat Valenciana (Spain) grant number PROMETEO/2020/063. RMAA. acknowledges the financial support from Generalitat Valenciana (CDEIGENT/2019/018).
URI: http://hdl.handle.net/10045/126155
ISSN: 1572-6657 (Print) | 1873-2569 (Online)
DOI: 10.1016/j.jelechem.2022.116697
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Peer Review: si
Publisher version: https://doi.org/10.1016/j.jelechem.2022.116697
Appears in Collections:INV - EQSUP - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailMekazni_etal_2022_JElectroanalChem.pdf1,49 MBAdobe PDFOpen Preview


This item is licensed under a Creative Commons License Creative Commons