Ramos, Marina, Fortunati, Elena, Peltzer, Mercedes Ana, Dominici, Franco, Jiménez, Alfonso, Garrigós, María del Carmen, Kenny, José María Influence of thymol and silver nanoparticles on the degradation of poly(lactic acid) based nanocomposites: thermal and morphological properties Polymer Degradation and Stability. 2014, Accepted Manuscript, Available online 18 February 2014. doi:10.1016/j.polymdegradstab.2014.02.011 URI: http://hdl.handle.net/10045/35700 DOI: 10.1016/j.polymdegradstab.2014.02.011 ISSN: 0141-3910 (Print) Abstract: Biopolymers, such as poly(lactic acid) (PLA), have been proposed as environmentally-friendly alternatives in applications such as food packaging. In this work, silver nanoparticles and thymol were used as active additives in PLA matrices, combining the antibacterial activity of silver with the antioxidant performance of thymol. The combined action of both additives influenced PLA thermal degradation in ternary systems. DSC results showed that the addition of thymol resulted in a clear decrease of the glass transition temperature (Tg) of PLA, suggesting its plasticizing effect in PLA matrices. Slight modifications in mechanical properties of dog-bone bars were also observed after the addition of the active components, especially in the elastic modulus. FESEM analyses showed the good distribution of active additives through the PLA matrix, obtaining homogenous surfaces and highlighting the presence of silver nanoparticles successfully embedded into the bulk matrix. Degradation of these PLA-based nanocomposites with thymol and silver nanoparticles in composting conditions indicated that the inherent biodegradable character of this biopolymer was improved after this modification. The obtained nanocomposites showed suitable properties to be used as biodegradable active-food packaging systems with antioxidant and antimicrobial effects. Keywords:Poly(lactic acid), Thymol, Silver nanoparticles, Nanocomposites, Degradation Elsevier info:eu-repo/semantics/article