An augmented reality application for improving shopping experience in large retail stores

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: An augmented reality application for improving shopping experience in large retail stores
Authors: Cruz, Edmanuel | Orts-Escolano, Sergio | Gomez-Donoso, Francisco | Rizo, Carlos | Rangel, José Carlos | Mora, Higinio | Cazorla, Miguel
Research Group/s: Robótica y Visión Tridimensional (RoViT) | Informática Industrial y Redes de Computadores
Center, Department or Service: Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial | Universidad de Alicante. Departamento de Tecnología Informática y Computación | Universidad de Alicante. Instituto Universitario de Investigación Informática
Keywords: Smart shopping | Deep learning | Augmented reality | Retail stores | User experience | Human–computer interaction | 3D visualization
Knowledge Area: Ciencia de la Computación e Inteligencia Artificial | Arquitectura y Tecnología de Computadores
Issue Date: Sep-2019
Publisher: Springer London
Citation: Virtual Reality. 2019, 23(3): 281-291. doi:10.1007/s10055-018-0338-3
Abstract: In several large retail stores, such as malls, sport or food stores, the customer often feels lost due to the difficulty in finding a product. Although these large stores usually have visual signs to guide customers toward specific products, sometimes these signs are also hard to find and are not updated. In this paper, we propose a system that jointly combines deep learning and augmented reality techniques to provide the customer with useful information. First, the proposed system learns the visual appearance of different areas in the store using a deep learning architecture. Then, customers can use their mobile devices to take a picture of the area where they are located within the store. Uploading this image to the system trained for image classification, we are able to identify the area where the customer is located. Then, using this information and novel augmented reality techniques, we provide information about the area where the customer is located: route to another area where a product is available, 3D product visualization, user location, analytics, etc. The system developed is able to successfully locate a user in an example store with 98% accuracy. The combination of deep learning systems together with augmented reality techniques shows promising results toward improving user experience in retail/commerce applications: branding, advance visualization, personalization, enhanced customer experience, etc.
Sponsor: This work has been supported by the Spanish Government TIN2016-76515-R Grant, supported with Feder funds. It has also been supported by the University of Alicante Project GRE16-19.
ISSN: 1359-4338 (Print) | 1434-9957 (Online)
DOI: 10.1007/s10055-018-0338-3
Language: eng
Type: info:eu-repo/semantics/article
Rights: © Springer-Verlag London Ltd., part of Springer Nature 2018
Peer Review: si
Publisher version:
Appears in Collections:INV - RoViT - Artículos de Revistas
INV - AIA - Artículos de Revistas
INV - I2RC - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2019_Cruz_etal_VirtualReality_final.pdfVersión final (acceso restringido)3,93 MBAdobe PDFOpen    Request a copy
Thumbnail2019_Cruz_etal_VirtualReality_preprint.pdfPreprint (acceso abierto)39,33 MBAdobe PDFOpen Preview

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.