Electron enrichment of zigzag edges of armchair–oriented graphene nano–ribbons increases their stability and induces pinning of Fermi level

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/95409
Información del item - Informació de l'item - Item information
Título: Electron enrichment of zigzag edges of armchair–oriented graphene nano–ribbons increases their stability and induces pinning of Fermi level
Autor/es: Louis, Enrique | San-Fabián, Emilio | Chiappe, Guillermo | Vergés Brotons, José Antonio
Grupo/s de investigación o GITE: Física de la Materia Condensada | Materiales Avanzados | Química Cuántica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada | Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Electron enrichment | Zigzag edges | Armchair-oriented | Graphene nano-ribbons | Fermi level
Área/s de conocimiento: Física de la Materia Condensada | Química Física | Física Aplicada
Fecha de publicación: dic-2019
Editor: Elsevier
Cita bibliográfica: Carbon. 2019, 154: 211-218. doi:10.1016/j.carbon.2019.07.102
Resumen: Zigzag edges of neutral armchair–oriented Graphene Nano–Ribbons show states strongly localized at those edges. They behave as free radicals that can capture electrons during processing, increasing ribbon's stability. Thus, charging and its consequences should be investigated. Total energy calculations of finite ribbons using spin–polarized Density Functional Theory (DFT) show that ribbon's charging is feasible. Energies for Pariser-Parr-Pople (PPP) model Hamiltonian are compatible with DFT allowing the study of larger systems. Results for neutral ribbons indicate: i) the fundamental gap of spin–polarized (non–polarized) solutions is larger (smaller) than experimental data, ii) the ground state is spin–polarized, a characteristic still not observed experimentally. Total energy of GNRs decreases with the number of captured electrons reaching a minimum for a number that mainly depends on zigzag–edges size. The following changes with respect to neutral GNRs are noted: i) the ground state is not spin–polarized, ii) fundamental gap is in-between that of spin–polarized and non–polarized solutions of neutral ribbons, iii) while in neutral ribbons valence and conduction band onsets vs. the fundamental gap, linearly and symmetrically approach mid–gap with slope 0.5, charging induces Fermi level pinning, i.e., the slopes of the valence and conduction bands being about 0.1 and 0.9, in agreement with experiment.
Patrocinador/es: This work has been Partial financial support by the Spanish “Ministerio de Ciencia, Innovación y Universidades” (Grants FIS2015-64222-C2-1-P, FIS2015-64222-C2-2-P, MAT2016-77742-C2-2-P and AYA2015-66899-C2-2-P), and the Universidad de Alicante is gratefully acknowledged.
URI: http://hdl.handle.net/10045/95409
ISSN: 0008-6223 (Print) | 1873-3891 (Online)
DOI: 10.1016/j.carbon.2019.07.102
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2019 Elsevier Ltd.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.carbon.2019.07.102
Aparece en las colecciones:INV - LMA - Artículos de Revistas
INV - Física de la Materia Condensada - Artículos de Revistas
INV - QC - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2019_Louis_etal_Carbon_final.pdfVersión final (acceso restringido)2,7 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2019_Louis_etal_Carbon_preprint.pdfPreprint (acceso abierto)1,55 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.