Modelling the cross-shore profiles of sand beaches using artificial neural networks

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/93994
Información del item - Informació de l'item - Item information
Title: Modelling the cross-shore profiles of sand beaches using artificial neural networks
Authors: López, Isabel | Aragonés, Luis | Villacampa, Yolanda
Research Group/s: Ingeniería del Transporte, Territorio y Medio Litoral (AORTA) | Ingeniería del Terreno y sus Estructuras (InTerEs) | Modelización Matemática de Sistemas
Center, Department or Service: Universidad de Alicante. Departamento de Ingeniería Civil | Universidad de Alicante. Departamento de Matemática Aplicada
Keywords: Artificial neural network | Sand | Beach profile | Profile slope | Posidonia oceanica
Knowledge Area: Ingeniería e Infraestructura de los Transportes | Matemática Aplicada
Issue Date: 2019
Publisher: Taylor & Francis
Citation: Marine Georesources & Geotechnology. 2019, 37(6): 683-694. doi:10.1080/1064119X.2018.1482510
Abstract: Artificial neural networks (ANN) have been widely used successfully to solve coastal engineering problems. In this article, they are used to model the cross-shore profile of sandy beaches taking into account the possible effect of marine vegetation (Posidonia oceanica). Sixty ANNs were generated by modifying both the inputs and the number of neurons in the hidden layer. The best results were obtained with the following inputs: wave height perpendicular to the coast and the associated period and probability of occurrence, median sediment size, profile slope, and energy reduction factor due to P. oceanica. With these inputs and 10 neurons in the hidden layer, a mean absolute error of 0.22 m during training and 0.21 m during the test was obtained, which represents an improvement of 81.2% and 55.5% compared to models without and with P. oceanica.
Sponsor: This research has been partially funded by Universidad de Alicante through the project “Estudio sobre el perfil de equilibrio y la profundidad de cierre en playas de arena” (GRE15-02).
URI: http://hdl.handle.net/10045/93994
ISSN: 1064-119X (Print) | 1521-0618 (Online)
DOI: 10.1080/1064119X.2018.1482510
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2018 Informa UK Limited, trading as Taylor & Francis Group
Peer Review: si
Publisher version: https://doi.org/10.1080/1064119X.2018.1482510
Appears in Collections:INV - MMS - Artículos de Revistas
INV - AORTA - Artículos de Revistas
INV - INTERES - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2019_Lopez_etal_MarineGeoresourGeotech_final.pdfVersión final (acceso restringido)2,15 MBAdobe PDFOpen    Request a copy
Thumbnail2019_Lopez_etal_MarineGeoresourGeotech_preprint.pdfPreprint (acceso abierto)13,66 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.