3-D behaviour of photopolymers as holographic recording material

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/9374
Información del item - Informació de l'item - Item information
Title: 3-D behaviour of photopolymers as holographic recording material
Authors: Gallego, Sergi | Ortuño, Manuel | Neipp, Cristian | Márquez, Andrés | Kelly, John V. | Sheridan, John T. | Beléndez, Augusto | Pascual, Inmaculada
Research Group/s: Holografía y Procesado Óptico
Center, Department or Service: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Departamento de Óptica, Farmacología y Anatomía | University College Dublin. Departament of Electronic and Electrical Engineering
Keywords: Holography | Holographic recording materials | Photopolymers | Volume holograms
Knowledge Area: Óptica | Física Aplicada
Date Created: 2005
Issue Date: 9-Jun-2006
Publisher: SPIE, The International Society for Optical Engineering
Citation: GALLEGO RICO, Sergi, et al. "3-D behaviour of photopolymers as holographic recording material". En: Holography 2005: International Conference on Holography, Optical Recording and Processing of Information : 21-25 May 1995, Varna, Bulgaria. Bellingham, Wash. : SPIE, 2006. (Proceedings of SPIE; Vol. 6252). ISBN 978-0-81946-311-1, 62520B-1/5
Abstract: Research dealing with models to predict and understand the behaviour of photopolymers have generated many interesting studies considering a 2-dimensional geometry. These models suppose that the photopolymer layer is homogeneous in depth. Using this approximation good results can be obtained if the thickness of photopolymers is less than 200 μm. However, it is well known that Lambert-Beer's law predicts an exponential decay of the light inside the material. In recent years intensive efforts have been made to develop new holographic memories based on photopolymers. For this application the thickness of the layer is increased, usually to more than 500 μm, and Lambert-Beer's law plays a significant role in the recording step. The attenuation of the index profile inside these materials has been measured, showing that it is an important phenomenon. This attenuation limits the maximum effective optical thickness of the grating and shows that the 2-D models can not be applied in these cases. For this reason in this work a 3-dimensional model is presented to analyze the real behaviour of the photopolymers and study the variations in the index profile in depth. In this work we examine the predictions of the model in the case of a general dependence of the polymerisation rate with respect to the intensity pattern, and the effects of varying the exposure intensity are also compared in 3-D cases. Finally, the limitation of the data storage capacity of the materials due to the Lambert-Beer law is evaluated.
Sponsor: This work was supported by "Oficina de Ciencia y Tecnología, Generalitat Valenciana, Spain under projects GV01-130, GV04A/574 and GV04A/565, by "Ministerio de Educación y Ciencia", Spain, under projects MAT2004-04881-C02-01 and MAT2004-04881-C02-01, and by Science Foundation of Ireland (SFI), Enterprise, Ireland.
URI: http://hdl.handle.net/10045/9374
ISBN: 978-0-81946-311-1
ISSN: 0277-786X
DOI: 10.1117/12.676525
Language: eng
Type: info:eu-repo/semantics/article
Rights: Copyright 2006 Society of Photo-Optical Instrumentation Engineers. This paper was published in Proceedings of SPIE, vol. 6252, and is made available as an electronic reprint with permission of SPIE. One print or electronic copy may be made for personal use only. Systematic or multiple reproduction, distribution to multiple locations via electronic or other means, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.
Peer Review: si
Publisher version: http://dx.doi.org/10.1117/12.676525
Appears in Collections:INV - GHPO - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailSPIE_v6252_62520B_2005.pdf2,38 MBAdobe PDFOpen Preview

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.