Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/92768
Información del item - Informació de l'item - Item information
Title: Tuning porosity in macroscopic monolithic metal-organic frameworks for exceptional natural gas storage
Authors: Connolly, Bethany M. | Aragones-Anglada, Marta | Gandara-Loe, Jesús | Danaf, Nader Al | Lamb, Don C. | Mehta, Josh P. | Vulpe, Diana | Wuttke, Stefan | Silvestre-Albero, Joaquín | Moghadam, Peyman Z. | Wheatley, Andrew E.H. | Fairen-Jimenez, David
Research Group/s: Materiales Avanzados
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Porosity | Macroscopic monolithic | Metal-organic frameworks | Natural gas storage
Knowledge Area: Química Inorgánica
Issue Date: 28-May-2019
Publisher: Springer Nature
Citation: Nature Communications. 2019, 10: 2345. doi:10.1038/s41467-019-10185-1
Abstract: Widespread access to greener energy is required in order to mitigate the effects of climate change. A significant barrier to cleaner natural gas usage lies in the safety/efficiency limitations of storage technology. Despite highly porous metal-organic frameworks (MOFs) demonstrating record-breaking gas-storage capacities, their conventionally powdered morphology renders them non-viable. Traditional powder shaping utilising high pressure or chemical binders collapses porosity or creates low-density structures with reduced volumetric adsorption capacity. Here, we report the engineering of one of the most stable MOFs, Zr-UiO-66, without applying pressure or binders. The process yields centimetre-sized monoliths, displaying high microporosity and bulk density. We report the inclusion of variable, narrow mesopore volumes to the monoliths’ macrostructure and use this to optimise the pore-size distribution for gas uptake. The optimised mixed meso/microporous monoliths demonstrate Type II adsorption isotherms to achieve benchmark volumetric working capacities for methane and carbon dioxide. This represents a critical advance in the design of air-stable, conformed MOFs for commercial gas storage.
Sponsor: This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (NanoMOFdeli), ERC-2016-COG 726380. D.F.-J. thanks the Royal Society for funding through a University Research Fellowship. B.M.C. thanks the Ernest Oppenheimer Fund (Cambridge). J.S.A. would like to acknowledge financial support from MINECO (MAT2016–80285-p), GV (PROMETEOII/2014/004) and H2020 (MSCA-RISE-2016/NanoMed Project). J.G.L. acknowledges GV (GRISOLIAP/2016/089) for a research contract. J.P.M. would like to thank CRUK and The Cambridge Cancer Centre. P.Z.M. is grateful for start-up funds from the University of Sheffield. D.C.L. acknowledges the financial support of the Deutsche Forschungsgemeinschaft (DFG) through the collaborative research centre SFB1032 (Project B3) and the support of the LMU via the Center for NanoScience Munich (CeNS) and the LMUinnovativ BioImaging Network (BIN).
URI: http://hdl.handle.net/10045/92768
ISSN: 2041-1723
DOI: 10.1038/s41467-019-10185-1
Language: eng
Type: info:eu-repo/semantics/article
Rights: Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Peer Review: si
Publisher version: https://doi.org/10.1038/s41467-019-10185-1
Appears in Collections:INV - LMA - Artículos de Revistas
Research funded by the EU

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2019_Connolly_etal_NatureComm.pdf3,71 MBAdobe PDFOpen Preview

This item is licensed under a Creative Commons License Creative Commons