First-harmonic diffusion-based model applied to a polyvinyl-alcohol–acrylamide-based photopolymer
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10045/9146
Title: | First-harmonic diffusion-based model applied to a polyvinyl-alcohol–acrylamide-based photopolymer |
---|---|
Authors: | Neipp, Cristian | Gallego, Sergi | Ortuño, Manuel | Márquez, Andrés | Alvarez, Mariela L. | Beléndez, Augusto | Pascual, Inmaculada |
Research Group/s: | Holografía y Procesado Óptico |
Center, Department or Service: | Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Departamento de Óptica, Farmacología y Anatomía |
Keywords: | Holography | Holographic recording materials | Polymers | Hologram formation |
Knowledge Area: | Óptica | Física Aplicada |
Date Created: | 19-Sep-2002 |
Issue Date: | 1-Oct-2003 |
Publisher: | Optical Society of America |
Citation: | NEIPP LÓPEZ, Cristian, et al. "First-harmonic diffusion-based model applied to a polyvinyl-alcohol–acrylamide-based photopolymer". Journal of the Optical Society of America B. Vol. 20, No. 10 (Oct. 2003). ISSN 0740-3224, pp. 2052-2060 |
Abstract: | The photopolymerization diffusion models give accurate comprehension of the mechanism of hologram formation inside photopolymer materials. Although several models have been proposed, these models share the common assumption that there is an interplay between the processes of monomer polymerization and monomer diffusion. Nevertheless, most of the studies to check the validity of the theoretical models have been done by using photopolymers of the DuPont TM type, or photopolymer materials with values of the monomer diffusion time similar to those of the DuPont material. We check the applicability of a modified diffusion-based model to a polyvinyl alcohol–acrylamide photopolymer. This material has the property of longer diffusion times for the monomer to travel from the unexposed to the exposed zones than in the case of other polymeric materials. Some interesting effects are observed and theoretically treated by using the modified first-harmonic diffusion-based model we propose. |
Sponsor: | This work was supported by Ministerio de Ciencia y Tecnología, Comisión Interministerial de Ciencia y Tecnología (CICYT), Spain, under project MAT2000-1361-C04-04. |
URI: | http://hdl.handle.net/10045/9146 |
ISSN: | 0740-3224 (Print) | 1520-8540 (Online) |
DOI: | 10.1364/JOSAB.20.002052 |
Language: | eng |
Type: | info:eu-repo/semantics/article |
Rights: | This paper was published in JOSA B and is made available as an electronic reprint with the permission of OSA. The paper can be found at the following URL on the OSA website: http://www.opticsinfobase.org/josab/abstract.cfm?URI=josab-20-10-2052. Systematic or multiple reproduction or distribution to multiple locations via electronic or other means is prohibited and is subject to penalties under law. |
Peer Review: | si |
Appears in Collections: | INV - GHPO - Artículos de Revistas |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
![]() | 261,7 kB | Adobe PDF | Open Preview | |
Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.