Enabling low power acoustics for capillary sonoreactors

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/91252
Información del item - Informació de l'item - Item information
Title: Enabling low power acoustics for capillary sonoreactors
Authors: Navarro-Brull, Francisco J. | Teixeira, Andrew R. | Giri, Gaurav | Gómez, Roberto
Research Group/s: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES)
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: Power ultrasound | Capillary sonoreactor | Clogging | Scale-up | Modeling | Microreactors
Knowledge Area: Química Física
Issue Date: Sep-2019
Publisher: Elsevier
Citation: Ultrasonics Sonochemistry. 2019, 56: 105-113. doi:10.1016/j.ultsonch.2019.03.013
Abstract: Capillary reactors demonstrate outstanding potential for on-demand flow chemistry applications. However, non-uniform distribution of multiphase flows, poor solid handling, and the risk of clogging limit their usability for continuous manufacturing. While ultrasonic irradiation has been traditionally applied to address some of these limitations, their acoustic efficiency, uniformity and scalability to larger reactor systems are often disregarded. In this work, high-speed microscopic imaging reveals how cavitation-free ultrasound can unclog and prevent the blockage of capillary reactors. Modeling techniques are then adapted from traditional acoustic designs and applied to simulate and prototype sonoreactors with wider and more uniform sonication areas. Blade-, block- and cylindrical shape sonotrodes are optimized to accommodate longer capillary lengths in sonoreactors resonating at 28 kHz. Finally, a novel helicoidal capillary sonoreactor is proposed to potentially deal with a high concentration of solid particles in miniaturized flow chemistry. The acoustic designs and first principle rationalization presented here offer a transformative step forward in the scale-up of efficient capillary sonoreactors.
Sponsor: This research was partially funded by the EU project MAPSYN (Microwave, Acoustic and Plasma SYNtheses) developed in the group of Photochemistry and Electrochemistry of Semiconductors (GFES) at the University of Alicante (Spain), under grant agreement No. CP-IP 309376 of the European Union Seventh Framework Program.
URI: http://hdl.handle.net/10045/91252
ISSN: 1350-4177 (Print) | 1873-2828 (Online)
DOI: 10.1016/j.ultsonch.2019.03.013
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2019 Elsevier B.V.
Peer Review: si
Publisher version: https://doi.org/10.1016/j.ultsonch.2019.03.013
Appears in Collections:INV - GFES - Artículos de Revistas
Research funded by the EU

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2019_Navarro-Brull_etal_UltrasonicsSonochem_final.pdfVersión final (acceso restringido)1,99 MBAdobe PDFOpen    Request a copy
Thumbnail2019_Navarro-Brull_etal_UltrasonicsSonochem_accepted.pdfEmbargo 24 meses (acceso abierto: 14 marzo 2021)1,61 MBAdobe PDFOpen    Request a copy

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.