3DCNN Performance in Hand Gesture Recognition Applied to Robot Arm Interaction
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10045/90590
Title: | 3DCNN Performance in Hand Gesture Recognition Applied to Robot Arm Interaction |
---|---|
Authors: | Castro-Vargas, John Alejandro | Zapata-Impata, Brayan S. | Gil, Pablo | Garcia-Rodriguez, Jose | Torres, Fernando |
Research Group/s: | Automática, Robótica y Visión Artificial | Informática Industrial y Redes de Computadores |
Center, Department or Service: | Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Departamento de Tecnología Informática y Computación | Universidad de Alicante. Instituto Universitario de Investigación Informática |
Keywords: | Gesture Recognition from Video | 3D Convolutional Neural Network | Interaction human-robot |
Knowledge Area: | Ingeniería de Sistemas y Automática | Arquitectura y Tecnología de Computadores |
Issue Date: | 19-Feb-2019 |
Publisher: | SciTePress |
Citation: | Castro-Vargas, J.; Zapata-Impata, B.; Gil, P.; Garcia-Rodriguez, J. and Torres, F. (2019). 3DCNN Performance in Hand Gesture Recognition Applied to Robot Arm Interaction.In Proceedings of the 8th International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-758-351-3, pages 802-806. DOI: 10.5220/0007570208020806 |
Abstract: | In the past, methods for hand sign recognition have been successfully tested in Human Robot Interaction (HRI) using traditional methodologies based on static image features and machine learning. However, the recognition of gestures in video sequences is a problem still open, because current detection methods achieve low scores when the background is undefined or in unstructured scenarios. Deep learning techniques are being applied to approach a solution for this problem in recent years. In this paper, we present a study in which we analyse the performance of a 3DCNN architecture for hand gesture recognition in an unstructured scenario. The system yields a score of 73% in both accuracy and F1. The aim of the work is the implementation of a system for commanding robots with gestures recorded by video in real scenarios. |
Sponsor: | This work was funded by the Ministry of Economy, Industry and Competitiveness from the Spanish Government through the DPI2015-68087-R and the pre-doctoral grant BES-2016-078290, by the European Commission and FEDER funds through the project COMMANDIA (SOE2/P1/F0638), action supported by Interreg-V Sudoe. |
URI: | http://hdl.handle.net/10045/90590 |
ISBN: | 978-989-758-351-3 |
DOI: | 10.5220/0007570208020806 |
Language: | eng |
Type: | info:eu-repo/semantics/conferenceObject |
Rights: | © 2019 by SCITEPRESS – Science and Technology Publications, Lda. |
Peer Review: | si |
Publisher version: | https://doi.org/10.5220/0007570208020806 |
Appears in Collections: | INV - AUROVA - Comunicaciones a Congresos Internacionales INV - AIA - Comunicaciones a Congresos, Conferencias, etc. INV - I2RC - Comunicaciones a Congresos, Conferencias, etc. |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
![]() | Versión final (acceso restringido) | 1,75 MB | Adobe PDF | Open Request a copy |
![]() | Preprint (acceso abierto) | 1,56 MB | Adobe PDF | Open Preview |
Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.