Lattice oxygen activity in ceria-praseodymia mixed oxides for soot oxidation in catalysed Gasoline Particle Filters

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: Lattice oxygen activity in ceria-praseodymia mixed oxides for soot oxidation in catalysed Gasoline Particle Filters
Authors: Martínez-Munuera, Juan Carlos | Zoccoli, M. | Giménez-Mañogil, Javier | Garcia-Garcia, Avelina
Research Group/s: Materiales Carbonosos y Medio Ambiente
Center, Department or Service: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Instituto Universitario de Materiales
Keywords: Soot oxidation | Gasoline Particulate Filter (GPF) | Ceria-praseodymia mixed oxides | Lattice oxygen
Knowledge Area: Química Inorgánica
Issue Date: 15-May-2019
Publisher: Elsevier
Citation: Applied Catalysis B: Environmental. 2019, 245: 706-720. doi:10.1016/j.apcatb.2018.12.076
Abstract: Two series of ceria-praseodymia catalysts with varying composition have been systematically investigated in the oxidation of soot under inert atmosphere in order to find out its potential utilization in Gasoline Particulate Filters for GDI engines. The samples have been widely characterized by XRD, Raman spectroscopy, TEM, FESEM, XPS, N2 adsorption at −196 °C and O2-TPD. The praseodymium incorporation onto the ceria enhances the oxygen mobility in the subsurface/bulk of the sample favoring higher O2 released amounts under inert atmosphere. The intermediate compositions can promote more accentuated O2 emissions at moderate temperatures (up to 500 °C). The efficiency of the own active oxygen species released from the catalyst to oxidize soot under inert atmosphere, even under loose contact mode, has been well demonstrated. The pathways of the mechanism taking place seem to be dependent on the temperature and mainly on the type of contact among soot and catalyst. Under loose contact conditions and low-medium temperatures, the O2 freshly emitted from the catalyst can oxidize soot more efficiently than a diluted O2-gas stream. Conversely, under more severe conditions (higher temperature or tight contact conditions), the soot acts as a “driving force” and the own lattice oxygen species can be transferred directly towards soot surface in an efficient way.
Sponsor: The authors gratefully acknowledge the financial support of Generalitat Valenciana (PROMETEO/2018/076), MINECO (CTQ2015-64801-R) and the UE (FEDER funding). Also, JCMM acknowledges Spanish Ministry of Science, Innovation and Universities for the financial support through a FPU grant (FPU17/00603).
ISSN: 0926-3373 (Print) | 1873-3883 (Online)
DOI: 10.1016/j.apcatb.2018.12.076
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2018 Elsevier B.V.
Peer Review: si
Publisher version:
Appears in Collections:INV - MCMA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2019_Martinez-Munuera_etal_ApplCatB_final.pdfVersión final (acceso restringido)4,77 MBAdobe PDFOpen    Request a copy
Thumbnail2019_Martinez-Munuera_etal_ApplCatB_preprint.pdfPreprint (acceso abierto)2,21 MBAdobe PDFOpen Preview

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.