Modeling of oxygen reduction reaction in porous carbon materials in alkaline medium. Effect of microporosity

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/87263
Información del item - Informació de l'item - Item information
Título: Modeling of oxygen reduction reaction in porous carbon materials in alkaline medium. Effect of microporosity
Autor/es: Gabe, Atsushi | Ruiz‐Rosas, Ramiro | González-Gaitán, Carolina | Morallon, Emilia | Cazorla-Amorós, Diego
Grupo/s de investigación o GITE: Electrocatálisis y Electroquímica de Polímeros | Materiales Carbonosos y Medio Ambiente
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Química Inorgánica | Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Oxygen reduction reaction | Hydrogen peroxide reduction | Microporosity | ORR mathematical modeling | Charge transfer reaction | Mass transfer rate
Área/s de conocimiento: Química Inorgánica | Química Física
Fecha de publicación: 1-feb-2019
Editor: Elsevier
Cita bibliográfica: Journal of Power Sources. 2019, 412: 451-464. doi:10.1016/j.jpowsour.2018.11.075
Resumen: The role of porosity, and more specifically, microporosity, in the performance of carbon materials as Oxygen Reduction Reaction (ORR) catalysts in alkaline medium still has to be clarified. For this purpose, a highly microporous KOH-activated carbon and a microporous char have been prepared and their ORR performance in alkaline media were compared to that of two commercial carbon blacks with low and high surface areas, respectively. Interestingly, all carbon materials show a two-wave electrocatalytic process, where the limiting current and the number of electron transferred increase when going to more negative potentials. The limiting current and onset potential of the second wave is positively related to the amount of microporosity, and H2O2 electrochemical reduction tests have confirmed that the second wave could be related to the catalytic activity towards this reaction. In accordance to these findings, a model is developed that takes into account narrow and wide micropores in both charge transfer reactions and the mass transfer rate of O2 and H2O2. This model successfully reproduces the experimental electrochemical response during ORR of the analyzed porous carbon materials and suggests the important role of narrow micropores in H2O2 reduction.
Patrocinador/es: This work was supported by MINECO (CTQ2015-66080-R MINECO/FEDER) and Heiwa Nakajima Foundation.
URI: http://hdl.handle.net/10045/87263
ISSN: 0378-7753 (Print) | 1873-2755 (Online)
DOI: 10.1016/j.jpowsour.2018.11.075
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2018 Elsevier B.V.
Revisión científica: si
Versión del editor: https://doi.org/10.1016/j.jpowsour.2018.11.075
Aparece en las colecciones:INV - GEPE - Artículos de Revistas
INV - MCMA - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2019_Gabe_etal_JPowerSources_final.pdfVersión final (acceso restringido)2,49 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.