Confined Pt11+ Water Clusters in a MOF Catalyze the Low‐Temperature Water–Gas Shift Reaction with both CO2 Oxygen Atoms Coming from Water

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/87147
Información del item - Informació de l'item - Item information
Título: Confined Pt11+ Water Clusters in a MOF Catalyze the Low‐Temperature Water–Gas Shift Reaction with both CO2 Oxygen Atoms Coming from Water
Autor/es: Rivero-Crespo, Miguel A. | Mon, Marta | Ferrando-Soria, Jesús | Lopes, Christian W. | Boronat, Mercedes | Leyva-Pérez, Antonio | Corma, Avelino | Hernández-Garrido, Juan C. | López-Haro, Miguel | Calvino, Jose J. | Ramos-Fernández, Enrique V. | Armentano, Donatella | Pardo, Emilio
Centro, Departamento o Servicio: Universidad de Alicante. Instituto Universitario de Materiales
Palabras clave: Single atom catalyst | Metal-organic frameworks | Platinum | Water clusters | Water–gas shift reaction
Área/s de conocimiento: Química Inorgánica
Fecha de publicación: 6-nov-2018
Editor: Wiley-VCH Verlag GmbH & Co. KGaA
Cita bibliográfica: Angewandte Chemie. 2018, 130(52): 17340-17345. doi:10.1002/ange.201810251
Resumen: The synthesis and reactivity of single metal atoms in a low‐valence state bound to just water, rather than to organic ligands or surfaces, is a major experimental challenge. Herein, we show a gram‐scale wet synthesis of Pt11+ stabilized in a confined space by a crystallographically well‐defined first water sphere, and with a second coordination sphere linked to a metal–organic framework (MOF) through electrostatic and H‐bonding interactions. The role of the water cluster is not only isolating and stabilizing the Pt atoms, but also regulating the charge of the metal and the adsorption of reactants. This is shown for the low‐temperature water–gas shift reaction (WGSR: CO + H2O → CO2 + H2), where both metal coordinated and H‐bonded water molecules trigger a double water attack mechanism to CO and give CO2 with both oxygen atoms coming from water. The stabilized Pt1+ single sites allow performing the WGSR at temperatures as low as 50 °C.
Patrocinador/es: This work was supported by the MINECO (Spain) (Projects CTQ2016-75671-P, MAT2013 40823-R, MAT2016-81732-ERC, CTQ2017-86735-P, MAT2017-86992-R, MAT2017-82288-C2-1-P and Excellence Units “Severo Ochoa” and “Maria de Maeztu” SEV-2016-0683 and MDM-2015-0538) the Generalitat Valenciana (PROMETEOII/2014/004) and the Ministero dell’Istruzione, dell’Università e della Ricerca (Italy) and the Junta de Andalucía (FQM-195). M.M. and M.-A.R.C. thanks the MINECO for a predoctoral contract. Thanks are also extended to the Ramón y Cajal Program (E.V.R.-F., E.P. and J.C.H.-G.) and the “Subprograma atracció de talent-contractes postdoctorals de la Universitat de Valencia” (J.F.-S.). M.L.-H. acknowledges the financial support from the Juan de la Cierva Fellowships Program of MINECO (IJCI-2014-19367).
URI: http://hdl.handle.net/10045/87147
ISSN: 0044-8249 (Print) | 1521-3757 (Online)
DOI: 10.1002/ange.201810251
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Revisión científica: si
Versión del editor: https://doi.org/10.1002/ange.201810251
Aparece en las colecciones:Personal Investigador sin Adscripción a Grupo

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2018_Rivero-Crespo_etal_AngewChem_final.pdfVersión final (acceso restringido)6,69 MBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.