Density Intervals of Zeros of the Partial Sums of the Dirichlet Eta Function

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/82174
Información del item - Informació de l'item - Item information
Title: Density Intervals of Zeros of the Partial Sums of the Dirichlet Eta Function
Authors: Mora, Gaspar
Research Group/s: Curvas Alpha-Densas. Análisis y Geometría Local
Center, Department or Service: Universidad de Alicante. Departamento de Matemáticas
Keywords: Zeros of the partial sums of the eta function | Exponential polynomials | Diophantine approximation
Knowledge Area: Análisis Matemático
Issue Date: Dec-2018
Publisher: Springer International Publishing
Citation: Mediterranean Journal of Mathematics. 2018, 15:208. doi:10.1007/s00009-018-1252-3
Abstract: It is shown that the set Rn := {Rz : ηn(z) = 0} contains an interval [αn, bn] for some αn < 0 and 0 < bn := sup{Rz : ηn(z) = 0}, where ηn(z) := Σn j=1(−1)j−1/jz is the nth, n > 2, partial sum of the Dirichlet eta function η(z) := Σ∞ j=1(−1)j−1/jz. It means that in the strip [αn, bn]×R no vertical sub-strip is zero-free for ηn(z), n > 2. Since lim infn→∞ bn ≥ 1, that property is, in particular, asymptotically true for the partial sums ηn(z) in the critical strip (0, 1) × R.
Sponsor: This work was partially supported by a grant from Ministerio de Economía y Competitividad, Spain (MTM 2014-52865-P).
URI: http://hdl.handle.net/10045/82174
ISSN: 1660-5446 (Print) | 1660-5454 (Online)
DOI: 10.1007/s00009-018-1252-3
Language: eng
Type: info:eu-repo/semantics/article
Rights: © Springer Nature Switzerland AG 2018
Peer Review: si
Publisher version: https://doi.org/10.1007/s00009-018-1252-3
Appears in Collections:INV - CADAGL - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Mora_MediterrJMath_final.pdfVersión final (acceso restringido)531,14 kBAdobe PDFOpen    Request a copy
Thumbnail2018_Mora_MediterrJMath_preprint.pdfPreprint (acceso abierto)993,23 kBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.