Computational Design of Thermally Activated Delayed Fluorescence Materials: The Challenges Ahead

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/81787
Información del item - Informació de l'item - Item information
Title: Computational Design of Thermally Activated Delayed Fluorescence Materials: The Challenges Ahead
Authors: Olivier, Yoann | Sancho-Garcia, Juan-Carlos | Muccioli, Luca | D'Avino, Gabriele | Beljonne, David
Research Group/s: Química Cuántica
Center, Department or Service: Universidad de Alicante. Departamento de Química Física
Keywords: Computational design | Thermally activated delayed fluorescence
Knowledge Area: Química Física
Issue Date: 28-Sep-2018
Publisher: American Chemical Society
Citation: The Journal of Physical Chemistry Letters. 2018, 9: 6149-6163. doi:10.1021/acs.jpclett.8b02327
Abstract: Thermally activated delayed fluorescence (TADF) offers promise for all-organic light-emitting diodes with quantum efficiencies competing with those of transition-metal-based phosphorescent devices. While computational efforts have so far largely focused on gas-phase calculations of singlet and triplet excitation energies, the design of TADF materials requires multiple methodological developments targeting among others a quantitative description of electronic excitation energetics, fully accounting for environmental electrostatics and molecular conformational effects, the accurate assessment of the quantum mechanical interactions that trigger the elementary electronic processes involved in TADF, and a robust picture for the dynamics of these fundamental processes. In this Perspective, we describe some recent progress along those lines and highlight the main challenges ahead for modeling, which we hope will be useful to the whole TADF community.
Sponsor: The work in Mons was supported by the Belgian National Science Foundation, F.R.S.-FNRS. Computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by F.R.S.-FNRS under Grant No. 2.5020.11 as well as the Tier-1 supercomputer of the Fédération Wallonie-Bruxelles, infrastructure funded by the Walloon Region under Grant Agreement n1117545. The research in Bologna, Grenoble, and Mons is also through the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 646176 (EXTMOS project).
URI: http://hdl.handle.net/10045/81787
ISSN: 1948-7185
DOI: 10.1021/acs.jpclett.8b02327
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2018 American Chemical Society
Peer Review: si
Publisher version: https://doi.org/10.1021/acs.jpclett.8b02327
Appears in Collections:Research funded by the EU
INV - QC - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Olivier_etal_JPhysChemLett_final.pdfVersión final (acceso restringido)2,41 MBAdobe PDFOpen    Request a copy
Thumbnail2018_Olivier_etal_JPhysChemLett_accepted.pdfAccepted Manuscript (acceso abierto)1,44 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.