Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/76234
Información del item - Informació de l'item - Item information
Título: Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling
Autor/es: Klein, Dahlia R. | MacNeill, David | Lado, Jose L. | Soriano, David | Navarro-Moratalla, Efrén | Watanabe, Kenji | Taniguchi, Takashi | Manni, Soham | Canfield, Paul | Fernández-Rossier, Joaquín | Jarillo-Herrero, Pablo
Grupo/s de investigación o GITE: Grupo de Nanofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Magnetic insulators | Crystalline insulators | Electron tunneling
Área/s de conocimiento: Física de la Materia Condensada
Fecha de publicación: 3-may-2018
Editor: American Association for the Advancement of Science
Cita bibliográfica: Science. 2018. doi:10.1126/science.aar3617
Resumen: Magnetic insulators are a key resource for next-generation spintronic and topological devices. The family of layered metal halides promises varied magnetic states including ultrathin insulating multiferroics, spin liquids, and ferromagnets, but device-oriented characterization methods are needed to unlock their potential. Here, we report tunneling through the layered magnetic insulator CrI3 as a function of temperature and applied magnetic field. We electrically detect the magnetic ground state and inter-layer coupling and observe a field-induced metamagnetic transition. The metamagnetic transition results in magnetoresistances of 95%, 300%, and 550% for bilayer, trilayer, and tetralayer CrI3 barriers, respectively. We further measure inelastic tunneling spectra for our junctions, unveiling a rich spectrum consistent with collective magnetic excitations (magnons) in CrI3.
Patrocinador/es: This work was supported by the Center for Integrated Quantum Materials under NSF grant DMR-1231319 as well as the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4541 to PJH. Device fabrication has been partly supported by the Center for Excitonics, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences (BES) under Award Number DESC0001088. DRK acknowledges partial support by the NSF Graduate Research Fellowship Program (GRFP) under Grant No. 1122374. JLL acknowledges financial support from the ETH Zurich Postdoctoral Fellowship program. DS acknowledges the Marie Curie Cofund program at INL. JFR thanks support from PTDC/FIS-NAN/3668/2014. Growth of hexagonal boron nitride crystals at NIMS was supported by the Elemental Strategy Initiative conducted by the MEXT, Japan and JSPS KAKENHI Grant Numbers JP15K21722 and JP25106006. Work done at Ames Laboratory (PCC and SM) was supported by the DOE BES Division of Materials Sciences and Engineering. Ames Laboratory is operated for the DOE by Iowa State University under Contract No. DE-AC02-07CH11358. SM was funded by the Gordon and Betty Moore Foundation’s EPiQS Initiative through Grant GBMF4411.
URI: http://hdl.handle.net/10045/76234
ISSN: 0036-8075 (Print) | 1095-9203 (Online)
DOI: 10.1126/science.aar3617
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science
Revisión científica: si
Versión del editor: https://doi.org/10.1126/science.aar3617
Aparece en las colecciones:INV - Grupo de Nanofísica - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2018_Klein_etal_Science_final.pdfVersión final (acceso restringido)1,4 MBAdobe PDFAbrir    Solicitar una copia
Thumbnail2018_Klein_etal_Science_preprint.pdfPreprint (acceso abierto)4,43 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.