An algorithm to compute data diversity index in spatial networks

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/76216
Full metadata record
Full metadata record
DC FieldValueLanguage
dc.contributorAnálisis y Visualización de Datos en Redes (ANVIDA)es_ES
dc.contributor.authorAgryzkov, Taras-
dc.contributor.authorTortosa, Leandro-
dc.contributor.authorVicent, Jose F.-
dc.contributor.otherUniversidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificiales_ES
dc.date.accessioned2018-06-04T11:49:50Z-
dc.date.available2018-06-04T11:49:50Z-
dc.date.issued2018-11-15-
dc.identifier.citationApplied Mathematics and Computation. 2018, 337: 63-75. doi:10.1016/j.amc.2018.04.068es_ES
dc.identifier.issn0096-3003 (Print)-
dc.identifier.issn1873-5649 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/76216-
dc.description.abstractDiversity is an important measure that according to the context, can describe different concepts of general interest: competition, evolutionary process, immigration, emigration and production among others. It has been extensively studied in different areas, as ecology, political science, economy, sociology and others. The quality of spatial context of the city can be gauged through this measure. The spatial context with its corresponding dataset can be modelled using spatial networks. Consequently, this allows us to study the diversity of data present in this specific type of networks. In this paper we propose an algorithm to measure diversity in spatial networks based on the topology and the data associated to the network. In the experiments developed with networks of different sizes, it is observed that the proposed index is independent of the size of the network, but depends on its topology.es_ES
dc.description.sponsorshipPartially supported by the Spanish Government, Ministerio de Economía y Competividad, grant number TIN2017-84821-P.es_ES
dc.languageenges_ES
dc.publisherElsevieres_ES
dc.rights© 2018 Elsevier Inc.es_ES
dc.subjectDiversity indexes_ES
dc.subjectSpatial networkses_ES
dc.subjectUrban networkses_ES
dc.subjectSpatial statisticses_ES
dc.subjectGini–Simpson indexes_ES
dc.subject.otherCiencia de la Computación e Inteligencia Artificiales_ES
dc.titleAn algorithm to compute data diversity index in spatial networkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1016/j.amc.2018.04.068-
dc.relation.publisherversionhttps://doi.org/10.1016/j.amc.2018.04.068es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/TIN2017-84821-P-
Appears in Collections:INV - ANVIDA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Agryzkov_etal_ApplMathComp_final.pdfVersión final (acceso restringido)3,25 MBAdobe PDFOpen    Request a copy
Thumbnail2018_Agryzkov_etal_ApplMathComp_preprint.pdfPreprint (acceso abierto)7,63 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.