Modeling Pore-Scale Two-Phase Flow: How to Avoid Gas-Channeling Phenomena in Micropacked-Bed Reactors via Catalyst Wettability Modification

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/74808
Información del item - Informació de l'item - Item information
Title: Modeling Pore-Scale Two-Phase Flow: How to Avoid Gas-Channeling Phenomena in Micropacked-Bed Reactors via Catalyst Wettability Modification
Authors: Navarro-Brull, Francisco J. | Gómez, Roberto
Research Group/s: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES)
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: Pore-scale | Two-phase flow | Gas-channeling phenomena | Micropacked-bed reactors | Catalyst wettability modification
Knowledge Area: Química Física
Issue Date: 2018
Publisher: American Chemical Society
Citation: Industrial & Engineering Chemistry Research. 2018, 57(1): 84-92. doi:10.1021/acs.iecr.7b02493
Abstract: A model capable of providing a reliable estimation of two-phase flow dynamics and mass-transfer coefficients, is lacking for the design of micropacked-bed reactors via correlations, especially when the particle size of the bed is around 100 μm. In this work, we present a validation of the use of the phase field method for reproducing two-phase flow experiments found in the literature. This numerical simulation strategy sheds light on the impact of the micropacked-bed geometry and wettability on the formation of preferential gas channels. Counterintuitively, to homogenize the two-phase flow hydrodynamics and reduce radial mass-transfer limitations, solvent wettability of the support needs to be restricted, showing best performance when the contact angle ranges to 60° and capillary forces are still dominant. The tuning of gas–liquid–solid interactions by surface wettability modification opens a new window of opportunity for the design and scale-up of micropacked-bed reactors.
Sponsor: This research was partially funded by the EU project MAPSYN: Microwave, Acoustic and Plasma SYNtheses, under Grant Agreement No. CP-IP 309376 of the European Union Seventh Framework Program.
URI: http://hdl.handle.net/10045/74808
ISSN: 0888-5885 (Print) | 1520-5045 (Online)
DOI: 10.1021/acs.iecr.7b02493
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2017 American Chemical Society
Peer Review: si
Publisher version: https://doi.org/10.1021/acs.iecr.7b02493
Appears in Collections:INV - GFES - Artículos de Revistas
Research funded by the EU

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Navarro_Gomez_IndEngChemRes_final.pdfVersión final (acceso restringido)5,9 MBAdobe PDFOpen    Request a copy
Thumbnail2018_Navarro_Gomez_IndEngChemRes_accepted.pdfAccepted Manuscript (acceso abierto)2,37 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.