Tailoring tobacco hairy root metabolism for the production of stilbenes

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/72318
Información del item - Informació de l'item - Item information
Título: Tailoring tobacco hairy root metabolism for the production of stilbenes
Autor/es: Hidalgo, Diego | Georgiev, Milen | Marchev, Andrey | Bru-Martinez, Roque | Cusidó, Rosa M. | Corchete, Purificación | Palazon, Javier
Grupo/s de investigación o GITE: Proteómica y Genómica Funcional de Plantas
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Agroquímica y Bioquímica
Palabras clave: Tobacco hairy root | Stilbenes
Área/s de conocimiento: Bioquímica y Biología Molecular
Fecha de publicación: 21-dic-2017
Editor: Springer Nature
Cita bibliográfica: Scientific Reports. 2017, 7: 17976. doi:10.1038/s41598-017-18330-w
Resumen: Tobacco hairy root (HR) cultures, which have been widely used for the heterologous production of target compounds, have an innate capacity to bioconvert exogenous t-resveratrol (t-R) into t-piceatannol (t-Pn) and t-pterostilbene (t-Pt). We established genetically engineered HR carrying the gene encoding stilbene synthase (STS) from Vitis vinifera and/or the transcription factor (TF) AtMYB12 from Arabidopsis thaliana, in order to generate a holistic response in the phenylpropanoid pathway and coordinate the up-regulation of multiple metabolic steps. Additionally, an artificial microRNA for chalcone synthase (amiRNA CHS) was utilized to arrest the normal flux through the endogenous chalcone synthase (CHS) enzyme, which would otherwise compete for precursors with the STS enzyme imported for the flux deviation. The transgenic HR were able to biosynthesize the target stilbenes, achieving a production of 40 μg L−1 of t-R, which was partially metabolized into t-Pn and t-Pt (up to 2.2 μg L−1 and 86.4 μg L−1, respectively), as well as its glucoside piceid (up to 339.7 μg L−1). Major metabolic perturbations were caused by the TF AtMYB12, affecting both primary and secondary metabolism, which confirms the complexity of biotechnological systems based on seed plant in vitro cultures for the heterologous production of high-value molecules.
Patrocinador/es: This work has been supported by a grant from the Spanish Ministry of Science and Innovation (BIO2014-51861-R, BIO2017-82374-R), Generalitat de Catalunya (2014SGR215). Diego Hidalgo is a predoctoral fellow of Mexican CONACyT.
URI: http://hdl.handle.net/10045/72318
ISSN: 2045-2322
DOI: 10.1038/s41598-017-18330-w
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1038/s41598-017-18330-w
Aparece en las colecciones:INV - Proteómica y Genómica Funcional de Plantas - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2017_Hidalgo_etal_SciRep.pdf2,22 MBAdobe PDFAbrir Vista previa


Este ítem está licenciado bajo Licencia Creative Commons Creative Commons