Reading the social preferences of tourist destinations through social media data

Por favor, use este identificador para citar o enlazar este ítem:
Información del item - Informació de l'item - Item information
Título: Reading the social preferences of tourist destinations through social media data
Autor/es: Serrano-Estrada, Leticia | Martí Ciriquián, Pablo | Nolasco-Cirugeda, Almudena | Agryzkov, Taras
Grupo/s de investigación o GITE: Urbanística y Ordenación del Territorio en el Espacio Litoral | Análisis y Visualización de Datos en Redes (ANVIDA)
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Edificación y Urbanismo | Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial
Palabras clave: Public space | Social networks | Social preferences | Benidorm
Área/s de conocimiento: Urbanística y Ordenación del Territorio | Ciencia de la Computación e Inteligencia Artificial
Fecha de publicación: jul-2016
Editor: Centre of Land Policy and Valuations (CPSV)
Cita bibliográfica: Serrano-Estrada, Leticia, et al. “Reading the social preferences of tourist destinations through social media data”. En: Roca Cladera, Josep (ed.). Back to the Sense of the City: 11th VCT International monograph book = Volver al sentido de la ciudad: 11º CTV Libro monográfico internacional. Barcelona: Centre of Land Policy and Valuations (CPSV), 2016. ISBN 978-84-8157-660-3, pp. 1065-1075
Resumen: The social preferences of individuals have been traditionally identified through traditional means using field techniques such as direct interviewing, observation and people-counting. The virtual layer of the social system currently allows new ways to identify the most preferred urban areas or venues. With that in mind, this paper aims to study how data from two Location-Based Social Networks: Foursquare and Twitter can shed light on empirical and theoretical observations about the spatial patterns characterizing where people tend to be and socialise in a tourist city. The methodology proposed consists of three stages. First, a self-developed desktop application retrieves geospatial data from the selected social networks. Then, the dataset obtained is organised and sorted. Finally, the georeferenced data is visualised and analysed and the trends are noted and discussed. To that end, the city of Benidorm was selected as a case study and the data was collected during the off-peak tourist season. The results demonstrate a correlation between the empirical assumptions and the findings from the social networks analysis about people’s preferred places. Foursquare provides a ranking of urban spaces and venues related to tourism, and the location of the tweets confirms the seasonal nature of Benidorm. Despite the fact that information from location-based social media has to be treated carefully, since each service has its own unique purpose, the method proposed has proven to be effective and reliable to depict a representative sample of people’s social patterns and preferences in tourist cities.
ISBN: 978-84-8157-660-3
Idioma: eng
Tipo: info:eu-repo/semantics/conferenceObject
Derechos: © Centre of Land Policy and Valuations (CPSV). Licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0
Revisión científica: si
Versión del editor:
Aparece en las colecciones:INV - ANVIDA - Comunicaciones a Congresos, Conferencias, etc.
INV - UOTEL - Comunicaciones a Congresos, Conferencias, etc.

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2016_Serrano-Estrada_etal_11thCTV.pdf573 kBAdobe PDFAbrir Vista previa

Este ítem está licenciado bajo Licencia Creative Commons Creative Commons