Application of an Evolutionary Algorithm to Reduce the Cost of Strengthening of Timber Beams

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/70962
Información del item - Informació de l'item - Item information
Title: Application of an Evolutionary Algorithm to Reduce the Cost of Strengthening of Timber Beams
Authors: Varona Moya, Francisco de Borja | Bru, David | Baeza, F. Javier | Ivorra, Salvador
Research Group/s: Grupo de Ensayo, Simulación y Modelización de Estructuras (GRESMES) | Durabilidad de Materiales y Construcciones en Ingeniería y Arquitectura
Center, Department or Service: Universidad de Alicante. Departamento de Ingeniería Civil
Keywords: Adaptive operators | FRP strengthening | Genetic algorithm | Structural optimization | Timber structures
Knowledge Area: Ingeniería de la Construcción | Mecánica de Medios Continuos y Teoría de Estructuras
Issue Date: 2018
Publisher: WIT Press
Citation: International Journal of Computational Methods and Experimental Measurements. 2018, 6(4): 667-678. doi:10.2495/CMEM-V6-N4-667-678
Abstract: The present paper describes the application of an evolutionary algorithm to the optimum design of the reinforcement of timber beams using FRP laminates and sheets. The objective function is the material cost of the strengthening and is subjected to ten constraints derived from the ultimate limit states for flexural and shear behaviour as well as the serviceability limit states. A genetic algorithm is used and the optimization problem is transformed into an unconstrained one by means of an adaptive penalty function. The design variables are the CFRP and GFRP mechanical properties and dimensions and they are encoded in a binary chromosome: type of composite material (CFRP or GFRP), reinforcement mechanical properties and geometric configuration. The search space for the minimum cost consists of 65 billion possible solutions. The crossover operator switches randomly between a fenotype crossover and flat crossover. An adaptive mutation scheme has been as well as an elitism criterion. The algorithm has been used for obtaining optimum designs in several specific load and geometry cases of glued laminated timber beams. The objective is finding whether there are specific reinforcement configurations more feasible for a certain loading situations: short or long beams and lower or higher loading increments. Five cases have been analysed. In the first three cases the length of the beams has constant values of 2, 2.5 and 3 m, whereas the value of loading was variable. In the latter case, the value of the load was fixed and the length of the beam was variable. The analysis of the results shows that the GFRP reinforcement is more efficient than CFRP for designs governed by shear failure, whereas CFRP is more effective in the case of flexural failure and deflection controlled strengthening of timber beams.
Sponsor: This work was partially financed by the University of Alicante by means of the GRE12-04 Research Project and Generalitat Valenciana, grant GV/2014/079.
URI: http://hdl.handle.net/10045/70962
ISSN: 2046-0546 (Print) | 2046-0554 (Online)
DOI: 10.2495/CMEM-V6-N4-667-678
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2018 WIT Press
Peer Review: si
Publisher version: http://dx.doi.org/10.2495/CMEM-V6-N4-667-678
Appears in Collections:INV - GRESMES - Artículos de Revistas
INV - DMCIA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2018_Varona_etal_IntJCompMethExpMeas.pdf1,05 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.