Interpreting human activity from electrical consumption data using reconfigurable hardware and hidden Markov models

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: Interpreting human activity from electrical consumption data using reconfigurable hardware and hidden Markov models
Authors: Ferrandez-Pastor, Francisco-Javier | Mora, Higinio | Sanchez-Romero, Jose-Luis | Nieto-Hidalgo, Mario | García-Chamizo, Juan Manuel
Research Group/s: Informática Industrial y Redes de Computadores | UniCAD: Grupo de Investigación en CAD/CAM/CAE de la Universidad de Alicante
Center, Department or Service: Universidad de Alicante. Departamento de Tecnología Informática y Computación
Keywords: Human activity recognition | Smart sensor | FPGA | Wavelet transform | Hidden Markov models
Knowledge Area: Arquitectura y Tecnología de Computadores
Issue Date: Aug-2017
Publisher: Springer Berlin Heidelberg
Citation: Journal of Ambient Intelligence and Humanized Computing. 2017, 8(4): 469-483. doi:10.1007/s12652-016-0431-y
Abstract: Human activity recognition is a promising research field in a wide variety of areas: ambient assisted living, pervasive and mobile computing, surveillance based security and context aware computing are some examples. In domestic environment, daily and frequent people activities use all kind of electric devices (appliances). Appliances connection or disconnection can provide useful data to know patterns of use, usual or unusual events and people behaviour, but smart meters only provide aggregated consumption data and cannot be used by the consumers to monitor individual actions or to know people behaviour. Furthermore, specialised systems for power load and monitoring are costly to install. This work proposes the design and development of low cost and embedded hardware tools to obtain disaggregated power consumption with the aim to interpret human activity. Non-intrusive load monitoring, design based on Wavelet Transform processing and Field Programmable Gate Arrays hardware implementation provide the necessary support to develop this kind of embedded systems. Human activity is classified using Hidden Markov models.
ISSN: 1868-5137 (Print) | 1868-5145 (Online)
DOI: 10.1007/s12652-016-0431-y
Language: eng
Type: info:eu-repo/semantics/article
Rights: © Springer-Verlag Berlin Heidelberg 2016
Peer Review: si
Publisher version:
Appears in Collections:INV - I2RC - Artículos de Revistas
INV - UNICAD - Artículos de Revistas
INV - AIA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2017_Ferrandez_etal_JAmbientIntellHumanComput_final.pdfVersión final (acceso restringido)2,41 MBAdobe PDFOpen    Request a copy

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.