Ethanol oxidation on shape-controlled platinum nanoparticles at different pHs: A combined in situ IR spectroscopy and online mass spectrometry study

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: Ethanol oxidation on shape-controlled platinum nanoparticles at different pHs: A combined in situ IR spectroscopy and online mass spectrometry study
Authors: Busó-Rogero, Carlos | Brimaud, Sylvain | Solla-Gullón, José | Vidal-Iglesias, Francisco J. | Herrero, Enrique | Behm, R. Jürgen | Feliu, Juan M.
Research Group/s: Electroquímica de Superficies | Electroquímica Aplicada y Electrocatálisis
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: Ethanol oxidation | pH effect | Platinum | Nanoparticles | DEMS
Knowledge Area: Química Física
Issue Date: 15-Feb-2016
Publisher: Elsevier
Citation: Journal of Electroanalytical Chemistry. 2016, 763: 116-124. doi:10.1016/j.jelechem.2015.12.034
Abstract: Ethanol oxidation on different shape-controlled platinum nanoparticles at different pHs was studied using electrochemical, Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) and, especially, Differential Electrochemical Mass Spectrometry (DEMS) techniques, the latter giving interesting quantitative information about the products of ethanol oxidation. Two Pt nanoparticle samples were used for this purpose: (100) and (111) preferentially oriented Pt nanoparticles. The results are in agreement with previous findings that the preferred decomposition product depends on surface structure, with COads formation on (100) domains and acetaldehyde/acetic acid formation on (111) domains. However, new information has been obtained about the changes in CHx and CO formation at lower potentials when the pH is changed, showing that CHx formation is favored against the decrease in CO adsorption on (100) domains. At higher potentials, complete oxidation to CO2 occurs from both CHx and CO fragments. In (111) Pt nanoparticles, the splitting of Csingle bondC bond is hindered, favoring acetaldehyde and acetate formation even in 0.5 M H2SO4. C1 fragments become even less when the pH increases, being nearly negligible in the highest pH studied.
Sponsor: This work has been financially supported by the MCINN-FEDER (Spain) and Generalitat Valenciana through projects CTQ 2013-44083-P and PROMETEO/2014/013, respectively.
ISSN: 1572-6657 (Print) | 1873-2569 (Online)
DOI: 10.1016/j.jelechem.2015.12.034
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2015 Elsevier B.V.
Peer Review: si
Publisher version:
Appears in Collections:INV - EQSUP - Artículos de Revistas
INV - LEQA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2016_Buso_etal_JEC_final.pdfVersión final (acceso restringido)2,74 MBAdobe PDFOpen    Request a copy
Thumbnail2016_Buso_etal_JEC_preprint.pdfPreprint (acceso abierto)2,48 MBAdobe PDFOpen Preview

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.