New highlights and a new centrality measure based on the Adapted PageRank Algorithm for urban networks

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/61930
Full metadata record
Full metadata record
DC FieldValueLanguage
dc.contributorAnálisis y Visualización de Datos en Redes (ANVIDA)es_ES
dc.contributor.authorAgryzkov, Taras-
dc.contributor.authorTortosa, Leandro-
dc.contributor.authorVicent, Jose F.-
dc.contributor.otherUniversidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificiales_ES
dc.date.accessioned2017-01-20T16:55:07Z-
dc.date.available2017-01-20T16:55:07Z-
dc.date.issued2016-12-01-
dc.identifier.citationApplied Mathematics and Computation. 2016, 291: 14-29. doi:10.1016/j.amc.2016.06.036es_ES
dc.identifier.issn0096-3003 (Print)-
dc.identifier.issn1873-5649 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/61930-
dc.description.abstractThe Adapted PageRank Algorithm (APA) proposed by Agryzkov et al. provides us a method to establish a ranking of nodes in an urban network. We can say that it constitutes a centrality measure in urban networks, with the main characteristic that is able to consider the importance of data obtained from the urban networks in the process of computing the centrality of every node. Starting from the basic idea of this model, we modify the construction of the matrix used for the classification of the nodes in order of importance. In the APA model, the data matrix is constructed from the original idea of PageRank vector, given an equal chance to jump from one node to another, regardless of the topological distance between nodes. In the new model this idea is questioned. A new matrix with the data network is constructed so that now the data from neighboring nodes are considered more likely than data from the nodes that are farther away. In addition, this new algorithm has the characteristic that depends on a parameter α, which allows us to decide the importance attached, in the computation of the centrality, to the topology of the network and the amount of data associated with the node. Various numerical experiments with a network of very small size are performed to test the influence of the data associated with the nodes, depending always on the choice of the parameter α. Also we check the differences between the values produced by the original APA model and the new one. Finally, these measures are applied to a real urban network, in which we perform a visual comparison of the results produced by the various measures calculated from the algorithms studied.es_ES
dc.description.sponsorshipPartially supported by the Spanish Government, Ministerio de Economía y Competividad, grant number TIN2014-53855-P.es_ES
dc.languageenges_ES
dc.publisherElsevieres_ES
dc.rights© 2016 Elsevier Inc.es_ES
dc.subjectAdapted PageRank Algorithmes_ES
dc.subjectPageRank vectores_ES
dc.subjectNetworks centralityes_ES
dc.subjectEigenvector centralityes_ES
dc.subjectUrban networkses_ES
dc.subject.otherCiencia de la Computación e Inteligencia Artificiales_ES
dc.titleNew highlights and a new centrality measure based on the Adapted PageRank Algorithm for urban networkses_ES
dc.typeinfo:eu-repo/semantics/articlees_ES
dc.peerreviewedsies_ES
dc.identifier.doi10.1016/j.amc.2016.06.036-
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.amc.2016.06.036es_ES
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses_ES
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TIN2014-53855-P-
Appears in Collections:INV - ANVIDA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2016_Agryzkov_etal_AMC_final.pdfVersión final (acceso restringido)4,2 MBAdobe PDFOpen    Request a copy
Thumbnail2016_Agryzkov_etal_AMC_preprint.pdfPreprint (acceso abierto)3,91 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.