New highlights and a new centrality measure based on the Adapted PageRank Algorithm for urban networks

Empreu sempre aquest identificador per citar o enllaçar aquest ítem
Información del item - Informació de l'item - Item information
Títol: New highlights and a new centrality measure based on the Adapted PageRank Algorithm for urban networks
Autors: Agryzkov, Taras | Tortosa, Leandro | Vicent, Jose F.
Grups d'investigació o GITE: Análisis y Visualización de Datos en Redes (ANVIDA)
Centre, Departament o Servei: Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial
Paraules clau: Adapted PageRank Algorithm | PageRank vector | Networks centrality | Eigenvector centrality | Urban networks
Àrees de coneixement: Ciencia de la Computación e Inteligencia Artificial
Data de publicació: 1-de desembre-2016
Editor: Elsevier
Citació bibliogràfica: Applied Mathematics and Computation. 2016, 291: 14-29. doi:10.1016/j.amc.2016.06.036
Resum: The Adapted PageRank Algorithm (APA) proposed by Agryzkov et al. provides us a method to establish a ranking of nodes in an urban network. We can say that it constitutes a centrality measure in urban networks, with the main characteristic that is able to consider the importance of data obtained from the urban networks in the process of computing the centrality of every node. Starting from the basic idea of this model, we modify the construction of the matrix used for the classification of the nodes in order of importance. In the APA model, the data matrix is constructed from the original idea of PageRank vector, given an equal chance to jump from one node to another, regardless of the topological distance between nodes. In the new model this idea is questioned. A new matrix with the data network is constructed so that now the data from neighboring nodes are considered more likely than data from the nodes that are farther away. In addition, this new algorithm has the characteristic that depends on a parameter α, which allows us to decide the importance attached, in the computation of the centrality, to the topology of the network and the amount of data associated with the node. Various numerical experiments with a network of very small size are performed to test the influence of the data associated with the nodes, depending always on the choice of the parameter α. Also we check the differences between the values produced by the original APA model and the new one. Finally, these measures are applied to a real urban network, in which we perform a visual comparison of the results produced by the various measures calculated from the algorithms studied.
Patrocinadors: Partially supported by the Spanish Government, Ministerio de Economía y Competividad, grant number TIN2014-53855-P.
ISSN: 0096-3003 (Print) | 1873-5649 (Online)
DOI: 10.1016/j.amc.2016.06.036
Idioma: eng
Tipus: info:eu-repo/semantics/article
Drets: © 2016 Elsevier Inc.
Revisió científica: si
Versió de l'editor:
Apareix a la col·lecció: INV - ANVIDA - Artículos de Revistas

Arxius per aquest ítem:
Arxius per aquest ítem:
Arxiu Descripció Tamany Format  
Thumbnail2016_Agryzkov_etal_AMC_final.pdfVersión final (acceso restringido)4,2 MBAdobe PDFObrir     Sol·licitar una còpia
Thumbnail2016_Agryzkov_etal_AMC_preprint.pdfPreprint (acceso abierto)3,91 MBAdobe PDFObrir Vista prèvia

Tots els documents dipositats a RUA estan protegits per drets d'autors. Alguns drets reservats.