Influence of free surfaces on microstructure evolution of radiation damage in Fe from molecular dynamics and object kinetic Monte Carlo calculations

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/61911
Información del item - Informació de l'item - Item information
Título: Influence of free surfaces on microstructure evolution of radiation damage in Fe from molecular dynamics and object kinetic Monte Carlo calculations
Autor/es: Aliaga Gosálvez, María José | Dopico, Ignacio | Martín Bragado, Ignacio | Caturla, Maria J.
Grupo/s de investigación o GITE: Física de la Materia Condensada | Grupo de Nanofísica
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada
Palabras clave: Molecular dynamics | Monte Carlo simulations | Nuclear fusion | Nuclear materials | Radiation damage
Área/s de conocimiento: Física Aplicada
Fecha de publicación: nov-2016
Editor: Wiley-VCH Verlag GmbH & Co. KGaA
Cita bibliográfica: Physica Status Solidi A. 2016, 213(11): 2969-2973. doi:10.1002/pssa.201600158
Resumen: The influence of surfaces on the evolution of damage of irradiated Fe is studied using object kinetic Monte Carlo with input from molecular dynamics simulations and ab initio calculations. Two effects are analysed: the influence of traps and the initial distribution of damage in the cascade. These simulations show that for a trap concentration of around 100 appm, there are no significant differences between defect concentrations in bulk and thin films. However, the initial distribution of defects plays an important role not only on total defect concentration but also on defect type, for the model used in this study. Damage produced by a 100 keV Fe ion impinging a Fe thin film. Blue (dark) spheres are self-interstitials, red (light) spheres are vacancies.
Patrocinador/es: The research leading to these results is partly funded by the European Atomic Energy Community’s (Euratom) Seventh Framework Programme FP7/2007–2013 under grant agreement no. 604862 (MatISSE project) and in the framework of the EERA (European Energy Research Alliance) Joint Programme on Nuclear Materials. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014–2018 under grant agreement no. 633053.
URI: http://hdl.handle.net/10045/61911
ISSN: 1862-6300 (Print) | 1862-6319 (Online)
DOI: 10.1002/pssa.201600158
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: © 2016 The Authors/Employers. Phys. Status Solidi A published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1002/pssa.201600158
Aparece en las colecciones:INV - Grupo de Nanofísica - Artículos de Revistas
INV - Física de la Materia Condensada - Artículos de Revistas
Investigaciones financiadas por la UE

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2016_Aliaga_etal_PhysStatusSolidiA_final.pdfVersión final (acceso restringido)905,29 kBAdobe PDFAbrir    Solicitar una copia
Thumbnail2016_Aliaga_etal_PhysStatusSolidiA_preprint.pdfPreprint (acceso abierto)288,04 kBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.