Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: Monitoring activity at the Daguangbao mega-landslide (China) using Sentinel-1 TOPS time series interferometry
Authors: Dai, Keren | Li, Zhenhong | Tomás, Roberto | Liu, Guoxiang | Yu, Bing | Wang, Xiaowen | Cheng, Haiqin | Chen, Jiajun | Stockamp, Julia
Research Group/s: Ingeniería del Terreno y sus Estructuras (InTerEs)
Center, Department or Service: Universidad de Alicante. Departamento de Ingeniería Civil
Keywords: InSAR | Sentinel-1 | TOPS | Daguangbao landslide | Tandem-X | Wenchuan earthquake
Knowledge Area: Ingeniería del Terreno
Issue Date: 1-Dec-2016
Publisher: Elsevier
Citation: Remote Sensing of Environment. 2016, 186: 501-513. doi:10.1016/j.rse.2016.09.009
Abstract: The Daguangbao mega-landslide (China), induced by the 2008 Wenchuan earthquake (Mw = 7.9), with an area of approximately 8 km2, is one of the largest landslides in the world. Experts predicted that the potential risk and instability of the landslide might remain for many decades, or even longer. Monitoring the activity of such a large landslide is hence critical. Terrain Observation by Progressive Scans (TOPS) mode from the Sentinel-1 satellite provides us with up-to-date high-quality Synthetic Aperture Radar (SAR) images over a wide ground coverage (250 × 250 km), enabling full exploitation of various InSAR applications. However, the TOPS mode introduces azimuth-dependent Doppler variations to radar signals, which requires an additional processing step especially for SAR interferometry. Sentinel-1 TOPS data have been widely applied to earthquakes, but the performance of TOPS data-based time series analysis requires further exploitation. In this study, Sentinel-1 TOPS data were employed to investigate landslide post-seismic activities for the first time. To deal with the azimuth-dependent Doppler variations, a processing chain of TOPS time series interferometry approach was developed. Since the Daguangbao landslide is as a result of the collapse of a whole mountain caused by the 2008 Mw 7.9 Wenchuan earthquake, the existing Digital Elevation Models (DEMs, e.g. SRTM and ASTER) exhibit height differences of up to approximately 500 m. Tandem-X images acquired after the earthquake were used to generate a high resolution post-seismic DEM. The high gradient topographic errors of the SRTM DEM (i.e. the differences between the pre-seismic SRTM and the actual post-seismic elevation), together with low coherence in mountainous areas make it difficult to derive a precise DEM using the traditional InSAR processing procedure. A re-flattening iterative method was hence developed to generate a precise TanDEM-X DEM in this study. The volume of the coseismic Daguangbao landslide was estimated to be of 1.189 ± 0.110 × 109 m3 by comparing the postseismic Tandem-X DEM with the preseismic SRTM DEM, which is consistent with the engineering geological survey result. The time-series results from Sentinel-1 show that some sectors of the Daguangbao landslide are still active (and displaying four sliding zones) and exhibiting a maximum displacement rate of 8 cm/year, even eight years after the Wenchuan earthquake. The good performance of TOPS in this time series analysis indicates that up-to-date high-quality TOPS data with spatiotemporal baselines offer significant potential in terms of future InSAR applications.
Sponsor: This work was supported by the National Natural Science Foundation of China under Grant No. 41474003. The research stay of Dr. Tomás at Newcastle University was funded by the Ministry of Education, Culture and Sport within the framework of Project PRX14/00100. Additional funding was obtained from the Spanish Government under projects TIN2014-55413-C2-2-P and ESP2013-47780-C2-2-R. Part of this work is also supported by the UK Natural Environmental Research Council (NERC) through the Centre for the Observation and Modelling of Earthquakes, Volcanoes and Tectonics (COMET, ref.: come30001) and the LICS and CEDRRiC projects (ref. NE/K010794/1 and NE/N012151/1, respectively), the ESA-MOST DRAGON-3 projects (ref. 10607 and 10665), the ESA-MOST DRAGON-4 project (ref. 32244) and the Open Fund from the Key Laboratory of Earth Fissures Geological Disaster, Ministry of Land and Resources (ref.: gla2013001).
ISSN: 0034-4257 (Print) | 1879-0704 (Online)
DOI: 10.1016/j.rse.2016.09.009
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (
Peer Review: si
Publisher version:
Appears in Collections:INV - INTERES - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2016_Dai_etal_RemoteSensEnviron.pdf7,59 MBAdobe PDFOpen Preview

This item is licensed under a Creative Commons License Creative Commons