A novel concept-level approach for ultra-concise opinion summarization

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/57961
Información del item - Informació de l'item - Item information
Title: A novel concept-level approach for ultra-concise opinion summarization
Authors: Lloret, Elena | Boldrini, Ester | Vodolazova, Tatiana | Martínez-Barco, Patricio | Muñoz, Rafael | Palomar, Manuel
Research Group/s: Procesamiento del Lenguaje y Sistemas de Información (GPLSI)
Center, Department or Service: Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos
Keywords: Text summarization | Ultra-concise opinion summarization | Electronic Word of Mouth | Natural language generation
Knowledge Area: Lenguajes y Sistemas Informáticos
Issue Date: 15-Nov-2015
Publisher: Elsevier
Citation: Expert Systems with Applications. 2015, 42(20): 7148-7156. doi:10.1016/j.eswa.2015.05.026
Abstract: The Web 2.0 has resulted in a shift as to how users consume and interact with the information, and has introduced a wide range of new textual genres, such as reviews or microblogs, through which users communicate, exchange, and share opinions. The exploitation of all this user-generated content is of great value both for users and companies, in order to assist them in their decision-making processes. Given this context, the analysis and development of automatic methods that can help manage online information in a quicker manner are needed. Therefore, this article proposes and evaluates a novel concept-level approach for ultra-concise opinion abstractive summarization. Our approach is characterized by the integration of syntactic sentence simplification, sentence regeneration and internal concept representation into the summarization process, thus being able to generate abstractive summaries, which is one the most challenging issues for this task. In order to be able to analyze different settings for our approach, the use of the sentence regeneration module was made optional, leading to two different versions of the system (one with sentence regeneration and one without). For testing them, a corpus of 400 English texts, gathered from reviews and tweets belonging to two different domains, was used. Although both versions were shown to be reliable methods for generating this type of summaries, the results obtained indicate that the version without sentence regeneration yielded to better results, improving the results of a number of state-of-the-art systems by 9%, whereas the version with sentence regeneration proved to be more robust to noisy data.
Sponsor: This research work has been partially funded by the University of Alicante, Generalitat Valenciana, Spanish Government and the European Commission through the projects, “Tratamiento inteligente de la información para la ayuda a la toma de decisiones” (GRE12-44), “Explotación y tratamiento de la información disponible en Internet para la anotación y generación de textos adaptados al usuario” (GRE13-15), DIIM2.0 (PROMETEOII/2014/001), ATTOS (TIN2012-38536-C03-03), LEGOLANG-UAGE (TIN2012-31224), SAM (FP7-611312), and FIRST (FP7-287607).
URI: http://hdl.handle.net/10045/57961
ISSN: 0957-4174 (Print) | 1873-6793 (Online)
DOI: 10.1016/j.eswa.2015.05.026
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2015 Elsevier Ltd.
Peer Review: si
Publisher version: http://dx.doi.org/10.1016/j.eswa.2015.05.026
Appears in Collections:INV - GPLSI - Artículos de Revistas
Research funded by the EU

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2015_Lloret_etal_ESWA_final.pdfVersión final (acceso restringido)364,88 kBAdobe PDFOpen    Request a copy
Thumbnail2015_Lloret_etal_ESWA_preprint.pdfPreprint (acceso abierto)212,29 kBAdobe PDFOpen Preview

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.