Finite-difference analysis of high demanding computational problems in optical periodic nonlinear media

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/57603
Información del item - Informació de l'item - Item information
Title: Finite-difference analysis of high demanding computational problems in optical periodic nonlinear media
Authors: Francés, Jorge | Bleda, Sergio | Gallego, Sergi | Fernandez, Roberto | Neipp, Cristian | Pascual, Inmaculada | Márquez, Andrés
Research Group/s: Holografía y Procesado Óptico
Center, Department or Service: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Departamento de Óptica, Farmacología y Anatomía | Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías
Keywords: Nonlinear Optics | Kerr effect | Finite-difference Time-domain method | Periodic media
Knowledge Area: Óptica | Física Aplicada | Teoría de la Señal y Comunicaciones
Date Created: 1-Jun-2016
Issue Date: 21-Jun-2016
Publisher: Universidade do Porto
Citation: FRANCÉS, Jorge, et al. "Finite-difference analysis of high demanding computational problems in optical periodic nonlinear media". Abstracts Booklet. Recent Trends in Modern Optics. Porto, 21-23 June 2016
Abstract: The application of nonlinear materials in photonic crystals and periodic optical media in general has been extensively investigated in literature but currently numerical simulation, which is necessary in the design of sophisticated photonics devices, is very challenging. The Split-Field Finite-Difference Time-Domain (SF- FDTD) approach is a formulation of FDTD that is specially tailored to efficiently incorporate the periodicity in the algorithm and provides a natural framework for simulating periodic optical media under oblique angle of incidence. Here, this formalism has been adapted for covering second- and third- order nonlinear materials with a tensorial formulation of both nonlinear susceptibilities. Even the method only considers a single period of the structure, the addition of nonlinear materials sets some issues that must be addressed. Firstly, the nonlinear dependence of the electromagnetic field, which is included due to the nonlinear polarization term, must be solved in each time step by means of an additional fixed-point iterative process. Hence, the computational intensity of the method is dramatically affected. Secondly, considering the tensorial behaviour of the second and third-order nonlinear susceptibilities establishes a challenge in terms of computational resources. In order to avoid these drawbacks, High- Performance Computing (HPC) solutions based on GPU and Intel Xeon Phi have been considered. The SF-FDTD method here presented gives the possibility of accurately analyse phenomena such as the second harmonic generation in second-order nonlinear materials, shifting of resonances in resonant gratings due to Kerr effect, bistability effects and all- optical behaviour in two-dimensionally binary gratings with nonlinear material filling the pillars.
Sponsor: This work was supported by the “Ministerio de Economía y Competitividad” (projects FIS2014-56100-C2-1-P and FIS2015-66570-P) and by the “Generalitat Valenciana” of Spain (projects PROMETEOII/2015/015, ISIC/2012/013 and GV/2014/076).
URI: http://hdl.handle.net/10045/57603
Language: eng
Type: info:eu-repo/semantics/conferenceObject
Rights: © Universidade do Porto
Peer Review: si
Publisher version: https://drive.google.com/file/d/0BxqUOu-nH8pFc2lmOGtsVkdIX1E/view
Appears in Collections:INV - GHPO - Comunicaciones a Congresos, Conferencias, etc.

Files in This Item:
Files in This Item:
File Description SizeFormat 
ThumbnailRecent-TrendsModernOptics-Oporto-June-2016.pdf336,66 kBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.