A semantic framework for textual data enrichment

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/54233
Full metadata record
Full metadata record
DC FieldValueLanguage
dc.contributorProcesamiento del Lenguaje y Sistemas de Información (GPLSI)es
dc.contributor.authorGutiérrez, Yoan-
dc.contributor.authorVázquez, Sonia-
dc.contributor.authorMontoyo, Andres-
dc.contributor.otherUniversidad de Alicante. Departamento de Lenguajes y Sistemas Informáticoses
dc.date.accessioned2016-04-14T10:25:49Z-
dc.date.available2016-04-14T10:25:49Z-
dc.date.issued2016-09-15-
dc.identifier.citationExpert Systems with Applications. 2016, 57: 248-269. doi:10.1016/j.eswa.2016.03.048es
dc.identifier.issn0957-4174 (Print)-
dc.identifier.issn1873-6793 (Online)-
dc.identifier.urihttp://hdl.handle.net/10045/54233-
dc.description.abstractIn this work we present a semantic framework suitable of being used as support tool for recommender systems. Our purpose is to use the semantic information provided by a set of integrated resources to enrich texts by conducting different NLP tasks: WSD, domain classification, semantic similarities and sentiment analysis. After obtaining the textual semantic enrichment we would be able to recommend similar content or even to rate texts according to different dimensions. First of all, we describe the main characteristics of the semantic integrated resources with an exhaustive evaluation. Next, we demonstrate the usefulness of our resource in different NLP tasks and campaigns. Moreover, we present a combination of different NLP approaches that provide enough knowledge for being used as support tool for recommender systems. Finally, we illustrate a case of study with information related to movies and TV series to demonstrate that our framework works properly.es
dc.description.sponsorshipThis research work has been partially funded by the University of Alicante, Generalitat Valenciana, Spanish Government and the European Commission through the Projects, TIN2015-65136-C2-2- R, TIN2015-65100-R, SAM (FP7-611312), and PROMETEOII/2014/001.es
dc.languageenges
dc.publisherElsevieres
dc.rights© 2016 Elsevier Ltd.es
dc.subjectRecommender systemses
dc.subjectFrameworkes
dc.subjectIntegrated semantic resourceses
dc.subjectSentiment analysises
dc.subjectWord Sense Disambiguationes
dc.subjectContent categorisationes
dc.subject.otherLenguajes y Sistemas Informáticoses
dc.titleA semantic framework for textual data enrichmentes
dc.typeinfo:eu-repo/semantics/articlees
dc.peerreviewedsies
dc.identifier.doi10.1016/j.eswa.2016.03.048-
dc.relation.publisherversionhttp://dx.doi.org/10.1016/j.eswa.2016.03.048es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/611312es
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TIN2015-65100-R-
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TIN2015-65136-C2-2-R-
Appears in Collections:INV - GPLSI - Artículos de Revistas
Research funded by the EU

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2016_Gutierrez_etal_ESWA_final.pdfVersión final (acceso restringido)2,72 MBAdobe PDFOpen    Request a copy
Thumbnail2016_Gutierrez_etal_ESWA_accepted.pdfAccepted Manuscript (acceso abierto)8,54 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.