A semantic framework for textual data enrichment
Por favor, use este identificador para citar o enlazar este ítem:
http://hdl.handle.net/10045/54233
Título: | A semantic framework for textual data enrichment |
---|---|
Autor/es: | Gutiérrez, Yoan | Vázquez, Sonia | Montoyo, Andres |
Grupo/s de investigación o GITE: | Procesamiento del Lenguaje y Sistemas de Información (GPLSI) |
Centro, Departamento o Servicio: | Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos |
Palabras clave: | Recommender systems | Framework | Integrated semantic resources | Sentiment analysis | Word Sense Disambiguation | Content categorisation |
Área/s de conocimiento: | Lenguajes y Sistemas Informáticos |
Fecha de publicación: | 15-sep-2016 |
Editor: | Elsevier |
Cita bibliográfica: | Expert Systems with Applications. 2016, 57: 248-269. doi:10.1016/j.eswa.2016.03.048 |
Resumen: | In this work we present a semantic framework suitable of being used as support tool for recommender systems. Our purpose is to use the semantic information provided by a set of integrated resources to enrich texts by conducting different NLP tasks: WSD, domain classification, semantic similarities and sentiment analysis. After obtaining the textual semantic enrichment we would be able to recommend similar content or even to rate texts according to different dimensions. First of all, we describe the main characteristics of the semantic integrated resources with an exhaustive evaluation. Next, we demonstrate the usefulness of our resource in different NLP tasks and campaigns. Moreover, we present a combination of different NLP approaches that provide enough knowledge for being used as support tool for recommender systems. Finally, we illustrate a case of study with information related to movies and TV series to demonstrate that our framework works properly. |
Patrocinador/es: | This research work has been partially funded by the University of Alicante, Generalitat Valenciana, Spanish Government and the European Commission through the Projects, TIN2015-65136-C2-2- R, TIN2015-65100-R, SAM (FP7-611312), and PROMETEOII/2014/001. |
URI: | http://hdl.handle.net/10045/54233 |
ISSN: | 0957-4174 (Print) | 1873-6793 (Online) |
DOI: | 10.1016/j.eswa.2016.03.048 |
Idioma: | eng |
Tipo: | info:eu-repo/semantics/article |
Derechos: | © 2016 Elsevier Ltd. |
Revisión científica: | si |
Versión del editor: | http://dx.doi.org/10.1016/j.eswa.2016.03.048 |
Aparece en las colecciones: | INV - GPLSI - Artículos de Revistas Investigaciones financiadas por la UE |
Archivos en este ítem:
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
![]() | Versión final (acceso restringido) | 2,72 MB | Adobe PDF | Abrir Solicitar una copia |
![]() | Accepted Manuscript (acceso abierto) | 8,54 MB | Adobe PDF | Abrir Vista previa |
Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.