A semantic framework for textual data enrichment

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/54233
Información del item - Informació de l'item - Item information
Title: A semantic framework for textual data enrichment
Authors: Gutiérrez, Yoan | Vázquez, Sonia | Montoyo, Andres
Research Group/s: Procesamiento del Lenguaje y Sistemas de Información (GPLSI)
Center, Department or Service: Universidad de Alicante. Departamento de Lenguajes y Sistemas Informáticos
Keywords: Recommender systems | Framework | Integrated semantic resources | Sentiment analysis | Word Sense Disambiguation | Content categorisation
Knowledge Area: Lenguajes y Sistemas Informáticos
Issue Date: 15-Sep-2016
Publisher: Elsevier
Citation: Expert Systems with Applications. 2016, 57: 248-269. doi:10.1016/j.eswa.2016.03.048
Abstract: In this work we present a semantic framework suitable of being used as support tool for recommender systems. Our purpose is to use the semantic information provided by a set of integrated resources to enrich texts by conducting different NLP tasks: WSD, domain classification, semantic similarities and sentiment analysis. After obtaining the textual semantic enrichment we would be able to recommend similar content or even to rate texts according to different dimensions. First of all, we describe the main characteristics of the semantic integrated resources with an exhaustive evaluation. Next, we demonstrate the usefulness of our resource in different NLP tasks and campaigns. Moreover, we present a combination of different NLP approaches that provide enough knowledge for being used as support tool for recommender systems. Finally, we illustrate a case of study with information related to movies and TV series to demonstrate that our framework works properly.
Sponsor: This research work has been partially funded by the University of Alicante, Generalitat Valenciana, Spanish Government and the European Commission through the Projects, TIN2015-65136-C2-2- R, TIN2015-65100-R, SAM (FP7-611312), and PROMETEOII/2014/001.
URI: http://hdl.handle.net/10045/54233
ISSN: 0957-4174 (Print) | 1873-6793 (Online)
DOI: 10.1016/j.eswa.2016.03.048
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2016 Elsevier Ltd.
Peer Review: si
Publisher version: http://dx.doi.org/10.1016/j.eswa.2016.03.048
Appears in Collections:INV - GPLSI - Artículos de Revistas
Research funded by the EU

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2016_Gutierrez_etal_ESWA_final.pdfVersión final (acceso restringido)2,72 MBAdobe PDFOpen    Request a copy
Thumbnail2016_Gutierrez_etal_ESWA_accepted.pdfAccepted Manuscript (acceso abierto)8,54 MBAdobe PDFOpen Preview


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.