Forecasting Elections with High Volatility

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: Forecasting Elections with High Volatility
Authors: Alaminos, Antonio
Research Group/s: Observatorio Europeo de Tendencias Sociales (OBETS)
Center, Department or Service: Universidad de Alicante. Departamento de Sociología II | Universidad de Alicante. Instituto Interuniversitario de Desarrollo Social y Paz
Keywords: Forecast | Election | Volatility | Markov models | Germany
Knowledge Area: Sociología | Estadística e Investigación Operativa
Issue Date: Nov-2015
Publisher: Associazione per la Statistica Applicata
Citation: Statistica Applicata - Italian Journal of Applied Statistics. 2015, 25(2): 165-184
Abstract: This article uses data from the social survey Allbus 1998 to introduce a method of forecasting elections in a context of electoral volatility. The approach models the processes of change in electoral behaviour, exploring patterns in order to model the volatility expressed by voters. The forecast is based on the matrix of transition probabilities, following the logic of Markov chains. The power of the matrix, and the use of the mover-stayer model, is debated for alternative forecasts. As an example of high volatility, the model uses data from the German general election of 1998. The unification of two German states in 1990 caused the incorporation of around 15 million new voters from East Germany who had limited familiarity and no direct experience of the political culture in West Germany. Under these circumstances, voters were expected to show high volatility.
ISSN: 1125-1964 | 2038-5587 (Online)
Language: eng
Type: info:eu-repo/semantics/article
Rights: © Statistica Applicata - Italian Journal of Applied Statistics
Peer Review: si
Publisher version:
Appears in Collections:INV - OBETS - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail05 Alaminos.pdf466,23 kBAdobe PDFOpen Preview

This item is licensed under a Creative Commons License Creative Commons