Interplay Between Structure, Stoichiometry, and Electron Transfer Dynamics in SILAR-based Quantum Dot-Sensitized Oxides

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/46086
Información del item - Informació de l'item - Item information
Title: Interplay Between Structure, Stoichiometry, and Electron Transfer Dynamics in SILAR-based Quantum Dot-Sensitized Oxides
Authors: Wang, Hai | Barceló Gisbert, Irene | Lana-Villarreal, Teresa | Gómez, Roberto | Bonn, Mischa | Cánovas, Enrique
Research Group/s: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES)
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: Quantum dot stoichiometry | SILAR | PbS quantum dots | Epitaxial growth | Electron transfer | THz spectroscopy | Quantum dot-sensitized solar cells
Knowledge Area: Química Física
Issue Date: 19-Sep-2014
Publisher: American Chemical Society
Citation: Nano Letters. 2014, 14(10): 5780-5786. doi:10.1021/nl5026634
Abstract: We quantify the rate and efficiency of picosecond electron transfer (ET) from PbS nanocrystals, grown by successive ionic layer adsorption and reaction (SILAR), into a mesoporous SnO2 support. Successive SILAR deposition steps allow for stoichiometry- and size-variation of the QDs, characterized using transmission electron microscopy. Whereas for sulfur-rich (p-type) QD surfaces substantial electron trapping at the QD surface occurs, for lead-rich (n-type) QD surfaces, the QD trapping channel is suppressed and the ET efficiency is boosted. The ET efficiency increase achieved by lead-rich QD surfaces is found to be QD-size dependent, increasing linearly with QD surface area. On the other hand, ET rates are found to be independent of both QD size and surface stoichiometry, suggesting that the donor–acceptor energetics (constituting the driving force for ET) are fixed due to Fermi level pinning at the QD/oxide interface. Implications of our results for QD-sensitized solar cell design are discussed.
Sponsor: This work has been financially supported by the Max Planck Society. H.W. is a recipient of a fellowship of the Graduate School Materials Science in Mainz (MAINZ) funded through the German Research Foundation in the Excellence Initiative (GSC 266). I.B. is grateful to the Materials Science Doctoral program of the Universitat d’Alacant (UA) for the award of a travel grant. The UA team acknowledges the financial support from the Spanish Ministry of Economy and Competitiveness through project MAT2012-37676 (FONDOS FEDER).
URI: http://hdl.handle.net/10045/46086
ISSN: 1530-6984 (Print) | 1530-6992 (Online)
DOI: 10.1021/nl5026634
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2014 American Chemical Society
Peer Review: si
Publisher version: http://dx.doi.org/10.1021/nl5026634
Appears in Collections:INV - GFES - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2014_Wang_etal_NanoLetters_final.pdfVersión final (acceso restringido)2,69 MBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.