Analyzing the commercial activities of a street network by ranking their nodes: a case study in Murcia, Spain

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: Analyzing the commercial activities of a street network by ranking their nodes: a case study in Murcia, Spain
Authors: Agryzkov, Taras | Oliver, Jose-Luis | Tortosa, Leandro | Vicent, Jose F.
Research Group/s: Análisis y Visualización de Datos en Redes (ANVIDA)
Center, Department or Service: Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial | Universidad de Alicante. Departamento de Expresión Gráfica y Cartografía
Keywords: Street network | PageRank vector | Spatial analysis | Data analysis | Network visualization
Knowledge Area: Ciencia de la Computación e Inteligencia Artificial | Composición Arquitectónica
Issue Date: 2014
Publisher: Taylor & Francis
Citation: International Journal of Geographical Information Science. 2014, 28(3): 479-495. doi:10.1080/13658816.2013.854370
Abstract: Urban researchers and planners are often interested in understanding how economic activities are distributed in urban regions, what forces influence their special pattern and how urban structure and functions are mutually dependent. In this paper, we want to show how an algorithm for ranking the nodes in a network can be used to understand and visualize certain commercial activities of a city. The first part of the method consists of collecting real information about different types of commercial activities at each location in the urban network of the city of Murcia, Spain. Four clearly differentiated commercial activities are studied, such as restaurants and bars, shops, banks and supermarkets or department stores, but obviously we can study other. The information collected is then quantified by means of a data matrix, which is used as the basis for the implementation of a PageRank algorithm which produces a ranking of all the nodes in the network, according to their significance within it. Finally, we visualize the resulting classification using a colour scale that helps us to represent the business network.
Sponsor: This work has been partially supported by Generalitat Valenciana grant number GV2012-111.
ISSN: 1365-8816 (Print) | 1365-8824 (Online)
DOI: 10.1080/13658816.2013.854370
Language: eng
Type: info:eu-repo/semantics/article
Rights: © 2013 Taylor & Francis
Peer Review: si
Publisher version:
Appears in Collections:INV - ANVIDA - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2014_Agryzkov_etal_IJGIS_final.pdfVersión final (acceso restringido)1,06 MBAdobe PDFOpen    Request a copy

Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.