3D Maps Representation Using GNG
Please use this identifier to cite or link to this item:
http://hdl.handle.net/10045/42641
Title: | 3D Maps Representation Using GNG |
---|---|
Authors: | Morell, Vicente | Cazorla, Miguel | Orts-Escolano, Sergio | Garcia-Rodriguez, Jose |
Research Group/s: | Robótica y Visión Tridimensional (RoViT) | Informática Industrial y Redes de Computadores |
Center, Department or Service: | Universidad de Alicante. Departamento de Ciencia de la Computación e Inteligencia Artificial | Universidad de Alicante. Departamento de Tecnología Informática y Computación | Universidad de Alicante. Instituto Universitario de Investigación Informática |
Keywords: | 3D maps representation | GNG |
Knowledge Area: | Ciencia de la Computación e Inteligencia Artificial | Arquitectura y Tecnología de Computadores |
Issue Date: | 27-Aug-2014 |
Publisher: | Hindawi Publishing Corporation |
Citation: | Mathematical Problems in Engineering. Volume 2014 (2014), Article ID 972304, 11 pages. doi:10.1155/2014/972304 |
Abstract: | Current RGB-D sensors provide a big amount of valuable information for mobile robotics tasks like 3D map reconstruction, but the storage and processing of the incremental data provided by the different sensors through time quickly become unmanageable. In this work, we focus on 3D maps representation and propose the use of the Growing Neural Gas (GNG) network as a model to represent 3D input data. GNG method is able to represent the input data with a desired amount of neurons or resolution while preserving the topology of the input space. Experiments show how GNG method yields a better input space adaptation than other state-of-the-art 3D map representation methods. |
Sponsor: | This work was partially funded by the Spanish Government DPI2013-40534-R grant. |
URI: | http://hdl.handle.net/10045/42641 |
ISSN: | 1024-123X (Print) | 1563-5147 (Online) |
DOI: | 10.1155/2014/972304 |
Language: | eng |
Type: | info:eu-repo/semantics/article |
Rights: | © 2014 Vicente Morell et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
Peer Review: | si |
Publisher version: | http://dx.doi.org/10.1155/2014/972304 |
Appears in Collections: | INV - I2RC - Artículos de Revistas INV - RoViT - Artículos de Revistas INV - AIA - Artículos de Revistas |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
![]() | 6,58 MB | Adobe PDF | Open Preview | |
This item is licensed under a Creative Commons License