Fundamental properties of High Mass X-ray Binaries

Please use this identifier to cite or link to this item:
Información del item - Informació de l'item - Item information
Title: Fundamental properties of High Mass X-ray Binaries
Other Titles: Propiedades fundamentales de binarias de rayos X masivas
Authors: González Galán, Ana
Research Director: Negueruela Díez, Ignacio
Center, Department or Service: Universidad de Alicante. Departamento de Física Aplicada
Keywords: Stars | Binaries | Pulsars | Supergiants | X-rays
Knowledge Area: Astronomía y Astrofísica
Date Created: 2014
Issue Date: 2014
Date of defense: 17-Jul-2014
Publisher: Universidad de Alicante
Abstract: The aim of this thesis is to characterise a sample of High Mass X-ray Binaries (HMXBs) formed by: IGR J00370+6122, XTE J1855-026, AX J1841.0-0535 and AX J1845.0-0433. These objects are composed of pulsars (rotating neutron stars) accreting material from the wind of their supergiant companions. The X-rays are produced in the interaction of the accreted material with the strong gravitational field of the neutron star that accelerates this material and heats it up to ~ 107 K. The study of HMXBs has strong implications in several areas of Physics and Astrophysics. They contain neutron stars whose study is essential to constrain the equation of state of nuclear dense matter, and provides insights on the astrophysical models of core collapse and Supernovae explosions. HMXBs considered as a population give information on the properties of the galaxy. In addition they are excellent test-beds to study accretion physics and outflows. The X-ray behaviour of these systems determines the class of system (classical HMXBs, Supergiant Fast X-ray Transients, Be/X-ray Binaries). The differences in the X-ray emission are supposed to be due to the different properties of the binary systems, such as the orbital properties, the magnetic field of the neutron star or the spectral type of the donor star. HMXBs in this thesis are wind-fed systems, therefore, the properties of the wind (which depend on the spectral type) and the interaction of this wind with the gravitational field of the compact object are key elements to understand the X-ray emission. Therefore, in this thesis an orbital solution for each target of study has been determined using optical spectra of the donor star. Moreover, to check if wind variability is related to the orbit of the binary system, analysis of Ha variations have been carried out. Furthermore, in the case of IGR J00370+6122 and XTE J1855-026 we have obtained an atmosphere model for each of the donor stars allowing us to characterise the atmospheres of these stars, and consequently to determine physical parameters such as the Teff or the log g. Finally publicly available X-ray light curves have been analysed to study the X-ray emission of the different sources against their orbital periods. As a general conclusion, it seems there is a continuum of properties of these systems more than a strict classification. A combination of factors, of which some of them could be unknown, might be the cause of their different X-ray flux behaviours. The outline of this thesis is as follows: the scientific context is given in Chapter 1 an overview of the analysis performed for each of the sources of study is presented in Chapter 2; Chapter 3 is dedicated to the description of a pipeline optimised for the reduction of FRODOSpec spectra of obscured red sources (donor stars of the targets of study); Chapters (4, 5 and 6) present the characterization of the four sources in this thesis, which are different kind of wind-fed systems; and finally general conclusions and future work are given in Chapter 7.
Language: eng
Type: info:eu-repo/semantics/doctoralThesis
Rights: Licencia Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0
Appears in Collections: Doctoral theses

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnailtesis_gonzalez_galan.pdf5,2 MBAdobe PDFOpen Preview

This item is licensed under a Creative Commons License Creative Commons