Oxygen evolution at ultrathin nanostructured Ni(OH)2 layers deposited on conducting glass

Please use this identifier to cite or link to this item: http://hdl.handle.net/10045/39137
Información del item - Informació de l'item - Item information
Title: Oxygen evolution at ultrathin nanostructured Ni(OH)2 layers deposited on conducting glass
Authors: Cibrev, Dejan | Jankulovska, Milena | Lana-Villarreal, Teresa | Gómez, Roberto
Research Group/s: Grupo de Fotoquímica y Electroquímica de Semiconductores (GFES)
Center, Department or Service: Universidad de Alicante. Departamento de Química Física | Universidad de Alicante. Instituto Universitario de Electroquímica
Keywords: Electrocatalysis | Chemical bath deposition | Nickel hydroxide | Nanostructured electrode | Oxygen evolution reaction | Transparent electrode
Knowledge Area: Química Física
Issue Date: 27-Feb-2013
Publisher: Elsevier
Citation: International Journal of Hydrogen Energy. 2013, 38(6): 2746-2753. doi:10.1016/j.ijhydene.2012.12.027
Abstract: Ultrathin and transparent nanostructured Ni(OH)2 films were deposited on conducting glass (F:SnO2) by a urea-based chemical bath deposition method. By controlling the deposition time, the amount of deposited Ni(OH)2 was varied over 7 orders of magnitude. The turnover number for O2 generation, defined as the number of O2 molecules generated per catalytic site (Ni atom) and per second, increases drastically as the electrocatalyst amount decreases. The electrocatalytic activity of the studied samples (measured as the current density at a certain potential) increases with the amount of deposited Ni(OH)2 until a saturation value is already obtained for a thin film of around 1 nm in thickness, composed of Ni(OH)2 nanoplatelets lying flat on the conductive support. The deposition of additional amounts of catalyst generates a porous honeycomb structure that does not improve (only maintains) the electrocatalytic activity. The optimized ultrathin electrodes show a remarkable stability, which indicates that the preparation of highly transparent electrodes, efficient for oxygen evolution, with a minimum amount of nickel is possible.
Sponsor: This work was financially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) through projects MAT2009-14004 (Fondos FEDER) and HOPE CSD2007-00007 (Consolider-Ingenio 2010). D.C. and M.J. thank the Spanish MINECO for the award of FPI grants. Partial support by the “Institute of Nanotechnologies for Clean Energies”, funded by the Generalitat Valenciana under project ISIC/2012/008, is also acknowledged.
URI: http://hdl.handle.net/10045/39137
ISSN: 0360-3199 (Print) | 1879-3487 (Online)
DOI: 10.1016/j.ijhydene.2012.12.027
Language: eng
Type: info:eu-repo/semantics/article
Peer Review: si
Publisher version: http://dx.doi.org/10.1016/j.ijhydene.2012.12.027
Appears in Collections:INV - GFES - Artículos de Revistas

Files in This Item:
Files in This Item:
File Description SizeFormat 
Thumbnail2013_Cibrev_etal_IJHE_final.pdfVersión final (acceso restringido)739,53 kBAdobe PDFOpen    Request a copy


Items in RUA are protected by copyright, with all rights reserved, unless otherwise indicated.