Performance analysis of multi-core CPUs and GPU computing on SF- FDTD scheme for third order nonlinear materials and periodic media

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/30301
Información del item - Informació de l'item - Item information
Título: Performance analysis of multi-core CPUs and GPU computing on SF- FDTD scheme for third order nonlinear materials and periodic media
Autor/es: Francés, Jorge | Bleda, Sergio | Tervo, Jani | Neipp, Cristian | Márquez, Andrés | Pascual, Inmaculada | Beléndez, Augusto
Grupo/s de investigación o GITE: Holografía y Procesado Óptico
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal | Universidad de Alicante. Departamento de Óptica, Farmacología y Anatomía | Universidad de Alicante. Instituto Universitario de Física Aplicada a las Ciencias y las Tecnologías | University of Eastern Finland. Department of Physics and Mathematics
Palabras clave: Electromagnetic analysis | Finite-Difference Time-Domain | Finite Element Method | Graphics processing units
Área/s de conocimiento: Física Aplicada | Óptica
Fecha de creación: may-2013
Fecha de publicación: 24-jun-2013
Editor: CMMSE
Cita bibliográfica: FRANCÉS MONLLOR, Jorge, et al. “Performance analysis of multi-core CPUs and GPU computing on SF- FDTD scheme for third order nonlinear materials and periodic media”. En: CMMSE 2013 : Proceedings of the 13th International Conference on Mathematical Methods in Science and Engineering, Almería, Spain, June 24-26, 2013 / ed. I.P. Hamiltion & J. Vigo-Aguiar. Almería : CMMSE, 2013. ISBN 978-84-616-2723-3, pp. 693-704
Resumen: The Split-Field Finite-Difference Time-Domain (SF-FDTD) scheme is an optimal formulation for modeling periodic optical media by means of a single unit period. The split-field components and the Periodic Boundary Condition (BPC) in the periodic boundaries allow to obtain successful results even with oblique angle of incidence. Under this situation the standard FDTD scheme requires multiple periods and smaller spatial and time resolutions in order to provide accurate results, thus degrading the computational performance of this method. However, considering nonlinear materials in SF-FDTD requires an iterative fixed-point procedure for solving the nonlinear system of equations. Furthermore, complex notation is needed for the split-field components and for correctly apply PBC. Although SF-FDTD is more appropriate for modeling periodic media than the standard FDTD scheme, the addition of nonlinear media degrades the overall performance of this method. In this work, the SF-FDTD formulation for third-order nonlinear materials is implemented taking into consideration parallel hardware architectures. The influence of the fixed-point procedure has been analyzed in both multi-core Central Processing Units (CPUs) and Graphic Processing Units (GPUs).The results show that highly optimized CPU version is competitive amongst GPU computing. Both optimized versions are not dramatically affected by the iterative process due to massive usage of their inner cache memories.
Patrocinador/es: This work was supported by the “Ministerio de Economía y Competitividad” of Spain under projects FIS2011-29803-C02-01, FIS2011-29803-C02-02 and by the “Generalitat Valenciana” of Spain under projects PROMETEO/2011/021 and ISIC/2012/013.
URI: http://hdl.handle.net/10045/30301
ISBN: 978-84-616-2723-3
Idioma: eng
Tipo: info:eu-repo/semantics/conferenceObject
Derechos: © Copyright 2013 CMMSE
Revisión científica: si
Aparece en las colecciones:INV - GHPO - Comunicaciones a Congresos, Conferencias, etc.

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
ThumbnailCMMSE_CaboGata_p_693_2013.pdf1,16 MBAdobe PDFAbrir Vista previa


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.