A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water

Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10045/25446
Información del item - Informació de l'item - Item information
Título: A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water
Autor/es: García Molina, Rafael | Abril, Isabel | Heredia-Avalos, Santiago | Kyriakou, Ioanna | Emfietzoglou, Dimitris
Grupo/s de investigación o GITE: Interacción de Partículas Cargadas con la Materia
Centro, Departamento o Servicio: Universidad de Alicante. Departamento de Física Aplicada | Universidad de Alicante. Departamento de Física, Ingeniería de Sistemas y Teoría de la Señal
Palabras clave: Spatial distribution | Energy deposition | Proton beams | Liquid water | SEICS
Área/s de conocimiento: Física Aplicada
Fecha de publicación: 20-sep-2011
Editor: IOP Publishing
Cita bibliográfica: GARCIA-MOLINA, Rafael, et al. "A combined molecular dynamics and Monte Carlo simulation of the spatial distribution of energy deposition by proton beams in liquid water". Physics in Medicine and Biology. Vol. 56, No. 19 (7 Oct. 2011). ISSN 0031-9155, pp. 6475-6493
Resumen: We have evaluated the spatial distribution of energy deposition by proton beams in liquid water using the simulation code SEICS (Simulation of Energetic Ions and Clusters through Solids), which combines molecular dynamics and Monte Carlo techniques and includes the main interaction phenomena between the projectile and the target constituents: (i) the electronic stopping force due to energy loss to target electronic excitations, including fluctuations due to the energy-loss straggling, (ii) the elastic scattering with the target nuclei, with their corresponding energy loss and (iii) the dynamical changes in projectile charge state due to electronic capture and loss processes. An important feature of SEICS is the accurate account of the excitation spectrum of liquid water, based on a consistent solid-state description of its energy-loss-function over the whole energy and momentum space. We analyse how the above-mentioned interactions affect the depth distribution of the energy delivered in liquid water by proton beams with incident energies of the order of several MeV. Our simulations show that the position of the Bragg peak is determined mainly by the stopping power, whereas its width can be attributed to the energy-loss straggling. Multiple elastic scattering processes contribute slightly only at the distal part of the Bragg peak. The charge state of the projectiles only changes when approaching the end of their trajectories, i.e. near the Bragg peak. We have also simulated the proton-beam energy distribution at several depths in the liquid water target, and found that it is determined mainly by the fluctuation in the energy loss of the projectile, evaluated through the energy-loss straggling. We conclude that a proper description of the target excitation spectrum as well as the inclusion of the energy-loss straggling is essential in the calculation of the proton beam depth–dose distribution.
Patrocinador/es: Support from the Spanish Ministerio de Ciencia e Innovación (Project FIS2010-17225) is recognized. IK and DE acknowledge support from the European Union FP7 ANTICARB (HEALTH-F2-2008-201587). This work is part of the COST Action MP 1002, Nanoscale Insights into Ion Beam Cancer Therapy.
URI: http://hdl.handle.net/10045/25446
ISSN: 0031-9155 (Print) | 1361-6560 (Online)
DOI: 10.1088/0031-9155/56/19/019
Idioma: eng
Tipo: info:eu-repo/semantics/article
Derechos: Copyright © Institute of Physics and Engineering in Medicine
Revisión científica: si
Versión del editor: http://dx.doi.org/10.1088/0031-9155/56/19/019
Aparece en las colecciones:INV - IPCM - Artículos de Revistas

Archivos en este ítem:
Archivos en este ítem:
Archivo Descripción TamañoFormato 
Thumbnail2011_PMB56(2011)6475_SEICS.pdfVersión final (acceso restringido)919,6 kBAdobe PDFAbrir    Solicitar una copia


Todos los documentos en RUA están protegidos por derechos de autor. Algunos derechos reservados.